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Introduction and motivation

Practical details

Timeline
§ Dates: 03/01/2023 - 21/02/2023 (13h45 - 17h)

§ Format: 7 classes (1h30 class + 1h30 TDs), 1 Exam (21/02)

§ Room: Salle 08 (Paris Santé campus)

Validation
§ One homework on 24/01. Deadline: 07/02.

§ One exam on the 21/02.

Contact
§ Email: kevin.scaman@ens.fr
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Introduction and motivation

Class overview

1. Introduction and general overview 03/01

2. Non-convex optimization 10/01

3. Structure of ReLU networks and group invariances 17/01

4. Approximation guarantees 24/01

5. Stability and robustness 31/01

6. Infinite width limit of NNs 07/02

7. Generative models 14/02

8. Exam 21/02
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Introduction and motivation

What is Deep Learning?

First, what are neural networks?
§ The notion changed over the last 8 decades...!

§ From early neural networks imitating real neurons...

§ To highly complex architectures with multiple sub-modules.
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Introduction and motivation

Timeline of Deep Learning

source: Mourtzis & Angelopoulos (2020)
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Introduction and motivation

Recent deep learning applications
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Introduction and motivation

Most recent breakthrough: image generation (Dalle2, Stable diffusion,
MidJourney, ...)
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Introduction and motivation

What is Deep Learning? (twitter wisdom)
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Mathematical formulation

Mathematical formulation
Recap of the ML training pipeline, NN formulation and loss functions
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Mathematical formulation

Multi-Layer Perceptron (Rumelhart, Hinton, Williams, 75)

Details
§ We will denote as L ě 1 the number of affine layers.

§ The case L “ 1 creates affine models.

§ Activations are computed coordinate-wise (σpxqi “ σpxiq).

§ A “neuron” is a coordinate of the output of an activation layer.

§ W plq and bplq are learnt during training.
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Mathematical formulation

Multi-Layer Perceptron: formal definition

Definition (MLP)

Let L ě 1, pdplqqlPJ0,LK P N˚L`1, and σ : R Ñ R a non-linear activation function. A

Multi-Layer Perceptron (MLP) of depth L, layer dimensions pdplqqlPJ0,LK and activation σ is

a function gθ : Rdp0q

Ñ RdpLq

of the form:

gθpxq “ f p2L´1q ˝ f p2L´2q ˝ ¨ ¨ ¨ ˝ f p2q ˝ f p1qpxq

where @l P J1, LK, f p2l´1qpxq “ W plqx ` bplq, f p2lqpxq “ σpxq, W plq P Rdplqˆdpl´1q

,

bplq P Rdplq
.

§ Its parameter is θ “
`

W plq, bplq
˘

lPJ1,LK.

§ We denote as g
plq
θ pxq “ f plq ˝ ¨ ¨ ¨ ˝ f p1qpxq the intermediate output after layer

l P J0, 2L ´ 1K.
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Mathematical formulation

Typical Machine Learning setup
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Mathematical formulation

Typical Machine Learning setup

Data distribution

Let X ,Y be an input and output space and D a distribution over pX ,Yq. Then, we denote
our (test) input/output pair as

pX,Y q „ D

Risk minimization (a.k.a. supervized ML)

The objective of risk minimization is to find a minimizer θ˚ P Rp of the optimization problem

min
θPRp

E
`

ℓpgθpXq, Y q
˘

where ℓ : Y2 Ñ R` is a loss function and gθ : X Ñ Y a model parameterized by θ P Rp.

The target loss (e.g. accuracy) may be hard to train, and can thus be different from
the one used as objective during training!
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Loss functions

Loss functions
Mean Square Error vs. Cross Entropy
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Loss functions

Typical Machine Learning setup

§ For example, ℓpy, y1q “ 1ty ‰ y1u gives the classification error (i.e. 1 - accuracy).

§ For classification tasks, we usually use Y “ RC where C is the number of classes, and
§ ℓpy, y1q “ 1targmaxi y

1
i ‰ argmaxi yiu (top-1 classification error) or,

§ ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq

¯

(cross entropy).

§ For regression tasks, we usually use Y “ Rd and
§ ℓpy, y1q “ }y ´ y1}22 “

ř

ipyi ´ y1
iq

2 (mean square error) or,
§ ℓpy, y1q “ }y ´ y1}1 “

ř

i |yi ´ y1
i| (mean absolute error).
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Loss functions

Mean square error (MSE): probabilistic interpretation

§ Definition: ℓpx, yq “ }x ´ y}22.

§ Probabilistic model: Assume that there is a θ P Rd such that

Yi “ gθpXiq ` εi

where εi „ N p0, σ2Iq are i.i.d. centered Gaussian random variables (mean 0 and variance
σ2), and Xi are i.i.d. and independent of θ.

§ Maximum Likelihood Estimation: The likelihood for the data to be drawn from a given
θ is

PθppXi, Yiqq “
ź

i

PpXiqPθpεi “ Yi ´ gθpXiqq 9 exp

ˆ

´
ř

i }Yi ´ gθpXiq}22

2σ2

˙

§ Maximizing the log-likelihood is equivalent to minimizing the MSE.
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Loss functions

Cross entropy: probabilistic interpretation

§ Definition: ℓpx, yq “ ´ log
´

exppxyq
ř

i exppxiq

¯

.

§ Probabilistic model: Assume that there is a θ P Rd such that, for all classes k P J1, CK,

logPpYi “ k | Xiq 9 gθpXiqk

where Xi are i.i.d. and independent of θ.

§ Maximum Likelihood Estimation: The likelihood for the data to be drawn from a given
θ is

PθppXi, Yiqq “
ź

i

PpXiqPθpYi | Xiq 9
ź

i

exppgθpXiqYiq
ř

k exppgθpXiqkq

§ Maximizing the log-likelihood is equivalent to minimizing the cross entropy.

MASH Master 2, PSL Mathematics of Deep Learning, 2023 17/28



Loss functions

Cross entropy: probabilistic interpretation

§ Definition: ℓpx, yq “ ´ log
´

exppxyq
ř

i exppxiq

¯

.

§ Probabilistic model: Assume that there is a θ P Rd such that, for all classes k P J1, CK,

logPpYi “ k | Xiq 9 gθpXiqk

where Xi are i.i.d. and independent of θ.

§ Maximum Likelihood Estimation: The likelihood for the data to be drawn from a given
θ is

PθppXi, Yiqq “
ź

i

PpXiqPθpYi | Xiq 9
ź

i

exppgθpXiqYiq
ř

k exppgθpXiqkq

§ Maximizing the log-likelihood is equivalent to minimizing the cross entropy.

MASH Master 2, PSL Mathematics of Deep Learning, 2023 17/28



Loss functions

Cross entropy: probabilistic interpretation

§ Definition: ℓpx, yq “ ´ log
´

exppxyq
ř

i exppxiq

¯

.

§ Probabilistic model: Assume that there is a θ P Rd such that, for all classes k P J1, CK,

logPpYi “ k | Xiq 9 gθpXiqk

where Xi are i.i.d. and independent of θ.

§ Maximum Likelihood Estimation: The likelihood for the data to be drawn from a given
θ is

PθppXi, Yiqq “
ź

i

PpXiqPθpYi | Xiq 9
ź

i

exppgθpXiqYiq
ř

k exppgθpXiqkq

§ Maximizing the log-likelihood is equivalent to minimizing the cross entropy.

MASH Master 2, PSL Mathematics of Deep Learning, 2023 17/28



Generalization beyond the training samples

Generalization beyond the training samples
From train accuracy to test accuracy
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Generalization beyond the training samples

Training objective

Empirical risk minimization

Let pxi, yiqiPJ1,nK be a collection of n observations drawn independently according to D.

Then, the objective of empirical risk minimization (ERM) is to find a minimizer θ̂n P Rp of

min
θPRp

1

n

n
ÿ

i“1

ℓpgθpxiq, yiq

Test error

The test error of the ERM model is

E
`

ℓpgθ̂npXq, Y q
˘

It is in general larger than the train error!
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Generalization beyond the training samples

Beyond the training samples

§ Left model: More regular, worst on the training set, better on the whole space.

§ Right model: Less regular, better on the training set, worst on the whole space.

§ How does the model behaves when the test samples are different from the training
samples?
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Generalization beyond the training samples

Beyond the training samples

Training objective and risk minimization

§ Let gθ : X Ñ Y be a model and D be a distribution of data points in X ˆ Y.

min
θPRd

LDpθq fi EpX,Y q„DpℓpgθpXq, Y qq

§ During training we minimize L
pDn

pθq where pDn “ 1
n

ř

i δpxi,yiq is the empirical distribution
over the training dataset pxi, yiqiPJ1,nK.

Other objectives

§ Usually, our training set is not the final target: our objective is to provide a good model
on another distribution Dtest.

§ Multiple sub-problems, depending on the test distribution:
§ Generalization, out-of-distribution samples,
§ Robustness, interpolation, adversarial attacks, ...
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Generalization beyond the training samples

Generalization

Setup

§ Training samples are drawn iid according to the target distribution pxi, yiq „ D “ Dtest.

§ Let pθn “ argminL
pDn

pθq be the parameter minimizing the training loss.

§ Assume that the model is sufficiently expressive and L
pDn

ppθnq “ 0. Is LDppθnq small?

Statistical error

§ If θ P Rd is independent of the training samples, then, with probability 1 ´ δ,

ˇ

ˇ

ˇ
L

pDn
pθq ´ LDpθq

ˇ

ˇ

ˇ
ď }ℓ}8

c

2 ln p2{δq

n

§ Unfortunately, pθn depends on the pDn...
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Generalization beyond the training samples

Decomposition of the error

Decomposition of the error

§ Let pθn,t be the parameters after t training steps and θ˚ P argminθ LDpθq. Then,

§ Approximation error: by the universality of MLPs, is arbitrarily small. d Œ

§ Statistical error: Convergence in O
´

1?
n

¯

by Chebyshev’s inequality. n Œ

§ Optimization error: Convergence for SGD if function is sufficiently regular. t Œ

§ Generalization error: Difficult part. Depends on the model and opt. d Õ, t Õ, n Œ
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Generalization beyond the training samples

Overfitting in ML

Usual analysis

§ Optimization error decreases

§ Generalization error increases

§ There is a trade-off

Usual mitigation strategies

§ Early stopping

§ Hyper-parameter selection via cross-validation

§ Regularization: minθ L pDn
pθq ` gpθq (usually gpθq “ γ}θ}22).
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Generalization beyond the training samples

But...Double descent!

Overfitting mitigated by over-parameterization

§ After a certain model size, test error starts decreasing again.

§ Over-parameterizing tends to create implicit regularization.

source: https://openai.com/blog/deep-double-descent/
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Generalization beyond the training samples

But...Grokking!?

Generalization beyond overfitting

§ All hope is lost... until you forget to turn your computer off during the holidays.

§ Very (very) large plateaux during training.

§ Still not a satisfactory explanation (don’t do this at home. ;-) ).

source: Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets, Power et.al., 2022.
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Generalization beyond the training samples

Class overview

1. Introduction and general overview 03/01
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