Mathematics of Deep Learning Introduction & general overview

> Lessons: Kevin Scaman TDs: Mathieu Even

Practical details

Timeline

- **Dates:** 03/01/2023 21/02/2023 (13h45 17h)
- Format: 7 classes (1h30 class + 1h30 TDs), 1 Exam (21/02)
- Room: Salle 08 (Paris Santé campus)

Validation

- One homework on 24/01. Deadline: 07/02.
- One exam on the 21/02.

Contact

Email: kevin.scaman@ens.fr

Class overview

1.	Introduction and general overview	03/01
2.	Non-convex optimization	10/01
3.	Structure of ReLU networks and group invariances	17/01
4.	Approximation guarantees	24/01
5.	Stability and robustness	31/01
6.	Infinite width limit of NNs	07/02
7.	Generative models	14/02
8.	Exam	21/02

Introduction and motivation

What is Deep Learning?

What is Deep Learning?

First, what are neural networks?

- The notion changed over the last 8 decades...!
- From early neural networks imitating real neurons...
- To highly complex architectures with multiple sub-modules.

Timeline of Deep Learning

source: Mourtzis & Angelopoulos (2020)

Introduction and motivation

Recent deep learning applications

Introduction and motivation

Most recent breakthrough: image generation (Dalle2, Stable diffusion, MidJourney, ...)

Images generated from prompts using MidJourney (https://www.midjourney.com/)

MASH Master 2, PSI

What is Deep Learning? (twitter wisdom)

Yann LeCun @vlecun

Some folks still seem confused about what deep learning is. Here is a definition:

DL is constructing networks of parameterized functional modules & training them from examples using gradient-based optimization.... facebook.com/722677142/post...

Traduire le Tweet

4:32 PM · 24 déc. 2019 · Facebook

. . .

Introduction and motivation

What is Deep Learning? (twitter wisdom)

Yann LeCun @vlecun

Some folks still seem confused about what deep learning is. Here is a definition:

DL is constructing networks of parameterized functional modules & training them from examples using gradient-based optimization ... facebook.com/722677142/post...

Traduire le Tweet

4:32 PM · 24 déc. 2019 · Facebook

. . .

Mathematical formulation

Recap of the ML training pipeline, NN formulation and loss functions

Mathematical formulation

Multi-Layer Perceptron (Rumelhart, Hinton, Williams, 75)

Details

- We will denote as $L \ge 1$ the number of affine layers.
- The case L = 1 creates affine models.
- Activations are computed coordinate-wise $(\sigma(x)_i = \sigma(x_i))$.
- A *"neuron"* is a coordinate of the output of an activation layer.
- $W^{(l)}$ and $b^{(l)}$ are learnt during training.

Multi-Layer Perceptron: formal definition

Definition (MLP)

Let $L \ge 1$, $(d^{(l)})_{l \in [\![0,L]\!]} \in \mathbb{N}^{*L+1}$, and $\sigma : \mathbb{R} \to \mathbb{R}$ a non-linear activation function. A *Multi-Layer Perceptron* (MLP) of depth L, layer dimensions $(d^{(l)})_{l \in [\![0,L]\!]}$ and activation σ is a function $g_{\theta} : \mathbb{R}^{d^{(0)}} \to \mathbb{R}^{d^{(L)}}$ of the form:

$$g_{\theta}(x) = f^{(2L-1)} \circ f^{(2L-2)} \circ \cdots \circ f^{(2)} \circ f^{(1)}(x)$$

where $\forall l \in [\![1, L]\!]$, $f^{(2l-1)}(x) = W^{(l)}x + b^{(l)}$, $f^{(2l)}(x) = \sigma(x)$, $W^{(l)} \in \mathbb{R}^{d^{(l)} \times d^{(l-1)}}$, $b^{(l)} \in \mathbb{R}^{d^{(l)}}$.

- Its parameter is $\theta = (W^{(l)}, b^{(l)})_{l \in [\![1,L]\!]}$.
- We denote as $g_{\theta}^{(l)}(x) = f^{(l)} \circ \cdots \circ f^{(1)}(x)$ the intermediate output after layer $l \in [\![0, 2L 1]\!]$.

AlexNet (Krizhevsky et.al., 2012)

Data distribution

Let \mathcal{X}, \mathcal{Y} be an input and output space and \mathcal{D} a distribution over $(\mathcal{X}, \mathcal{Y})$. Then, we denote our (test) input/output pair as

 $(X,Y) \sim \mathcal{D}$

Data distribution

Let \mathcal{X}, \mathcal{Y} be an input and output space and \mathcal{D} a distribution over $(\mathcal{X}, \mathcal{Y})$. Then, we denote our (test) input/output pair as

 $(X,Y) \sim \mathcal{D}$

Risk minimization (a.k.a. supervized ML)

The objective of *risk minimization* is to find a minimizer $\theta^* \in \mathbb{R}^p$ of the optimization problem

 $\min_{\theta \in \mathbb{R}^p} \mathbb{E}\big(\ell(g_{\theta}(X), Y)\big)$

where $\ell: \mathcal{Y}^2 \to \mathbb{R}_+$ is a loss function and $g_\theta: \mathcal{X} \to \mathcal{Y}$ a model parameterized by $\theta \in \mathbb{R}^p$.

Data distribution

Let \mathcal{X}, \mathcal{Y} be an input and output space and \mathcal{D} a distribution over $(\mathcal{X}, \mathcal{Y})$. Then, we denote our (test) input/output pair as

 $(X,Y) \sim \mathcal{D}$

Risk minimization (a.k.a. supervized ML)

The objective of *risk minimization* is to find a minimizer $\theta^* \in \mathbb{R}^p$ of the optimization problem

 $\min_{\theta \in \mathbb{R}^p} \mathbb{E}\big(\ell(g_{\theta}(X), Y)\big)$

where $\ell: \mathcal{Y}^2 \to \mathbb{R}_+$ is a loss function and $g_{\theta}: \mathcal{X} \to \mathcal{Y}$ a model parameterized by $\theta \in \mathbb{R}^p$.

The target loss (e.g. accuracy) may be hard to train, and can thus be different from the one used as objective during training!

MASH Master 2, PSL

Loss functions Mean Square Error vs. Cross Entrop

For example, $\ell(y, y') = \mathbb{1}\{y \neq y'\}$ gives the classification error (i.e. 1 - accuracy).

- For example, $\ell(y, y') = \mathbb{1}\{y \neq y'\}$ gives the classification error (i.e. 1 accuracy).
- For classification tasks, we usually use $\mathcal{Y} = \mathbb{R}^C$ where C is the number of classes, and
 - ▶ $\ell(y, y') = 1$ { $\operatorname{argmax}_i y'_i \neq \operatorname{argmax}_i y_i$ } (top-1 classification error) or,
 - $\ell(y,y') = -\sum_i y'_i \ln\left(\exp(y_i)/\sum_j \exp(y_j)\right)$ (cross entropy).

- For example, $\ell(y, y') = \mathbb{1}\{y \neq y'\}$ gives the classification error (i.e. 1 accuracy).
- For classification tasks, we usually use $\mathcal{Y} = \mathbb{R}^C$ where C is the number of classes, and

▶
$$\ell(y, y') = 1$$
{argmax_i $y'_i \neq argmax_i y_i$ } (top-1 classification error) or,

▶ $\ell(y,y') = -\sum_i y'_i \ln\left(\exp(y_i) / \sum_j \exp(y_j)\right)$ (cross entropy).

For **regression** tasks, we usually use $\mathcal{Y} = \mathbb{R}^d$ and

- $\ell(y,y') = \|y-y'\|_2^2 = \sum_i (y_i y_i')^2$ (mean square error) or,
- $\ell(y, y') = \|y y'\|_1 = \sum_i |y_i y'_i|$ (mean absolute error).

Mean square error (MSE): probabilistic interpretation

• **Definition:** $\ell(x, y) = ||x - y||_2^2$.

• **Probabilistic model:** Assume that there is a $\theta \in \mathbb{R}^d$ such that

$$Y_i = g_\theta(X_i) + \varepsilon_i$$

where $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I)$ are i.i.d. centered Gaussian random variables (mean 0 and variance σ^2), and X_i are i.i.d. and independent of θ .

Mean square error (MSE): probabilistic interpretation

• **Definition:** $\ell(x, y) = ||x - y||_2^2$.

• **Probabilistic model:** Assume that there is a $\theta \in \mathbb{R}^d$ such that

$$Y_i = g_\theta(X_i) + \varepsilon_i$$

where $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I)$ are i.i.d. centered Gaussian random variables (mean 0 and variance σ^2), and X_i are i.i.d. and independent of θ .

• Maximum Likelihood Estimation: The likelihood for the data to be drawn from a given θ is

$$\mathbb{P}_{\theta}((X_i, Y_i)) = \prod_i \mathbb{P}(X_i) \mathbb{P}_{\theta}(\varepsilon_i = Y_i - g_{\theta}(X_i)) \propto \exp\left(\frac{-\sum_i \|Y_i - g_{\theta}(X_i)\|_2^2}{2\sigma^2}\right)$$

Mean square error (MSE): probabilistic interpretation

• **Definition:** $\ell(x, y) = ||x - y||_2^2$.

• **Probabilistic model:** Assume that there is a $\theta \in \mathbb{R}^d$ such that

$$Y_i = g_\theta(X_i) + \varepsilon_i$$

where $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I)$ are i.i.d. centered Gaussian random variables (mean 0 and variance σ^2), and X_i are i.i.d. and independent of θ .

• Maximum Likelihood Estimation: The likelihood for the data to be drawn from a given θ is

$$\mathbb{P}_{\theta}((X_i, Y_i)) = \prod_i \mathbb{P}(X_i) \mathbb{P}_{\theta}(\varepsilon_i = Y_i - g_{\theta}(X_i)) \propto \exp\left(\frac{-\sum_i \|Y_i - g_{\theta}(X_i)\|_2^2}{2\sigma^2}\right)$$

Maximizing the log-likelihood is equivalent to minimizing the MSE.

MASH Master 2, PSL

Cross entropy: probabilistic interpretation

• **Definition:**
$$\ell(x, y) = -\log\left(\frac{\exp(x_y)}{\sum_i \exp(x_i)}\right)$$
.

Probabilistic model: Assume that there is a $\theta \in \mathbb{R}^d$ such that, for all classes $k \in [\![1, C]\!]$,

$$\log \mathbb{P}(Y_i = k \mid X_i) \propto g_{\theta}(X_i)_k$$

where X_i are i.i.d. and independent of θ .

Cross entropy: probabilistic interpretation

• **Definition:**
$$\ell(x, y) = -\log\left(\frac{\exp(x_y)}{\sum_i \exp(x_i)}\right)$$
.

• **Probabilistic model:** Assume that there is a $\theta \in \mathbb{R}^d$ such that, for all classes $k \in [\![1, C]\!]$,

$$\log \mathbb{P}(Y_i = k \mid X_i) \propto g_{\theta}(X_i)_k$$

where X_i are i.i.d. and independent of θ .

• Maximum Likelihood Estimation: The likelihood for the data to be drawn from a given θ is

$$\mathbb{P}_{\theta}((X_i, Y_i)) = \prod_i \mathbb{P}(X_i) \mathbb{P}_{\theta}(Y_i \mid X_i) \propto \prod_i \frac{\exp(g_{\theta}(X_i)Y_i)}{\sum_k \exp(g_{\theta}(X_i)k)}$$

Cross entropy: probabilistic interpretation

• **Definition:**
$$\ell(x, y) = -\log\left(\frac{\exp(x_y)}{\sum_i \exp(x_i)}\right)$$
.

Probabilistic model: Assume that there is a $\theta \in \mathbb{R}^d$ such that, for all classes $k \in [\![1, C]\!]$,

$$\log \mathbb{P}(Y_i = k \mid X_i) \propto g_{\theta}(X_i)_k$$

where X_i are i.i.d. and independent of θ .

• Maximum Likelihood Estimation: The likelihood for the data to be drawn from a given θ is

$$\mathbb{P}_{\theta}((X_i, Y_i)) = \prod_i \mathbb{P}(X_i) \mathbb{P}_{\theta}(Y_i \mid X_i) \propto \prod_i \frac{\exp(g_{\theta}(X_i)Y_i)}{\sum_k \exp(g_{\theta}(X_i)k)}$$

Maximizing the log-likelihood is equivalent to minimizing the cross entropy.

Generalization beyond the training samples From train accuracy to test accuracy

Training objective

Empirical risk minimization

Let $(x_i, y_i)_{i \in [\![1,n]\!]}$ be a collection of n observations drawn independently according to \mathcal{D} . Then, the objective of *empirical risk minimization* (ERM) is to find a minimizer $\hat{\theta}_n \in \mathbb{R}^p$ of

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(g_\theta(x_i), y_i)$$

Training objective

Empirical risk minimization

Let $(x_i, y_i)_{i \in [\![1,n]\!]}$ be a collection of n observations drawn independently according to \mathcal{D} . Then, the objective of *empirical risk minimization* (ERM) is to find a minimizer $\hat{\theta}_n \in \mathbb{R}^p$ of

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(g_\theta(x_i), y_i)$$

Test error

The *test error* of the ERM model is

$$\mathbb{E}\big(\ell(g_{\hat{\theta}_n}(X),Y)\big)$$

It is in general larger than the train error!

Beyond the training samples

- Left model: More regular, worst on the training set, better on the whole space.
- **Right model:** Less regular, better on the training set, worst on the whole space.
- How does the model behaves when the test samples are different from the training samples?

Beyond the training samples

Training objective and risk minimization

• Let $g_{\theta} : \mathcal{X} \to \mathcal{Y}$ be a model and \mathcal{D} be a distribution of data points in $\mathcal{X} \times \mathcal{Y}$.

$$\min_{\theta \in \mathbb{R}^d} \mathcal{L}_{\mathcal{D}}(\theta) \triangleq \mathbb{E}_{(X,Y) \sim \mathcal{D}}(\ell(g_{\theta}(X), Y))$$

• During training we minimize $\mathcal{L}_{\widehat{\mathcal{D}}_n}(\theta)$ where $\widehat{\mathcal{D}}_n = \frac{1}{n} \sum_i \delta_{(x_i, y_i)}$ is the empirical distribution over the training dataset $(x_i, y_i)_{i \in [\![1, n]\!]}$.

Beyond the training samples

Training objective and risk minimization

• Let $g_{\theta} : \mathcal{X} \to \mathcal{Y}$ be a model and \mathcal{D} be a distribution of data points in $\mathcal{X} \times \mathcal{Y}$.

$$\min_{\theta \in \mathbb{R}^d} \mathcal{L}_{\mathcal{D}}(\theta) \triangleq \mathbb{E}_{(X,Y) \sim \mathcal{D}}(\ell(g_{\theta}(X), Y))$$

• During training we minimize $\mathcal{L}_{\widehat{\mathcal{D}}_n}(\theta)$ where $\widehat{\mathcal{D}}_n = \frac{1}{n} \sum_i \delta_{(x_i, y_i)}$ is the empirical distribution over the training dataset $(x_i, y_i)_{i \in [\![1, n]\!]}$.

Other objectives

- Usually, our training set is not the final target: our objective is to provide a good model on another distribution D_{test}.
- Multiple sub-problems, depending on the test distribution:
 - Generalization, out-of-distribution samples,
 - Robustness, interpolation, adversarial attacks, ...

Generalization

Setup

- Training samples are drawn iid according to the target distribution (x_i, y_i) ~ D = D_{test}.
 Let θ̂_n = argmin L_{D_n}(θ) be the parameter minimizing the training loss.
- Assume that the model is sufficiently expressive and $\mathcal{L}_{\hat{\mathcal{D}}_n}(\hat{\theta}_n) = 0$. Is $\mathcal{L}_{\mathcal{D}}(\hat{\theta}_n)$ small?

Generalization

Setup

- Training samples are drawn iid according to the target distribution (x_i, y_i) ~ D = D_{test}.
 Let θ̂_n = argmin L_{D_n}(θ) be the parameter minimizing the training loss.
- Assume that the model is sufficiently expressive and $\mathcal{L}_{\hat{\mathcal{D}}_n}(\hat{\theta}_n) = 0$. Is $\mathcal{L}_{\mathcal{D}}(\hat{\theta}_n)$ small?

Statistical error

• If $\theta \in \mathbb{R}^d$ is independent of the training samples, then, with probability $1 - \delta$,

$$\left|\mathcal{L}_{\widehat{D}_n}(\theta) - \mathcal{L}_{\mathcal{D}}(\theta)\right| \leq \|\ell\|_{\infty} \sqrt{\frac{2\ln\left(2/\delta\right)}{n}}$$

Unfortunately, $\widehat{ heta}_n$ depends on the $\widehat{\mathcal{D}}_n$...

Decomposition of the error

► Let $\hat{\theta}_{n,t}$ be the parameters after t training steps and $\theta^* \in \operatorname{argmin}_{\theta} \mathcal{L}_{\mathcal{D}}(\theta)$. Then, $\mathcal{L}_{\mathcal{D}}(\hat{\theta}_{n,t}) = \mathcal{L}_{\mathcal{D}}(\hat{\theta}_{n,t}) - \mathcal{L}_{\hat{\mathcal{D}}_n}(\hat{\theta}_{n,t}) + \mathcal{L}_{\hat{\mathcal{D}}_n}(\hat{\theta}_{n,t}) - \mathcal{L}_{\hat{\mathcal{D}}_n}(\theta^*) + \mathcal{L}_{\mathcal{D}_n}(\theta^*) - \mathcal{L}_{\mathcal{D}}(\theta^*) + \mathcal{L}_{\mathcal{D}}(\theta^*)$ Generalization error
Optimization error
Statistical error
Approx.

Decomposition of the error

• **Approximation error:** by the universality of MLPs, is arbitrarily small.

Decomposition of the error

• **Approximation error:** by the universality of MLPs, is arbitrarily small.

Statistical error: Convergence in $O\left(\frac{1}{\sqrt{n}}\right)$ by Chebyshev's inequality.

n

Decomposition of the error

- **Approximation error:** by the universality of MLPs, is arbitrarily small.
- Statistical error: Convergence in $O\left(\frac{1}{\sqrt{n}}\right)$ by Chebyshev's inequality.
- **Optimization error:** Convergence for SGD if function is sufficiently regular.

 $n \searrow$

 $t \setminus$

Decomposition of the error

- Approximation error: by the universality of MLPs, is arbitrarily small.
- Statistical error: Convergence in $O\left(\frac{1}{\sqrt{n}}\right)$ by Chebyshev's inequality.
- **Optimization error:** Convergence for SGD if function is sufficiently regular.
- Generalization error: Difficult part. Depends on the model and opt.

 $d \nearrow, t \nearrow, n \searrow$

 $d \sum$

 $n \searrow$

 $t \searrow$

Overfitting in ML

Usual analysis

- Optimization error decreases
- Generalization error increases
- There is a trade-off

Usual mitigation strategies

- Early stopping
- Hyper-parameter selection via cross-validation
- ▶ Regularization: $\min_{\theta} \mathcal{L}_{\hat{\mathcal{D}}_n}(\theta) + g(\theta)$ (usually $g(\theta) = \gamma \|\theta\|_2^2$).

But...Double descent!

Overfitting mitigated by over-parameterization

- After a certain model size, test error starts decreasing again.
- Over-parameterizing tends to create **implicit regularization**.

MASH Master 2, PSL

But...Double descent!

Overfitting mitigated by over-parameterization

- > After a certain model size, test error starts decreasing again.
- Over-parameterizing tends to create **implicit regularization**.

source: https://openai.com/blog/deep-double-descent/

MASH Master 2, PSL

But...Grokking!?

Generalization beyond overfitting

- All hope is lost... until you forget to turn your computer off during the holidays.
- Very (very) large plateaux during training.
- Still not a satisfactory explanation (don't do this at home. ;-)).

source: Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets, Power et.al., 2022.

MASH Master 2, PS

Class overview

1.	Introduction and general overview	03/01
2.	Non-convex optimization	10/01
3.	Structure of ReLU networks and group invariances	17/01
4.	Approximation guarantees	24/01
5.	Stability and robustness	31/01
6.	Infinite width limit of NNs	07/02
7.	Generative models	14/02
8.	Exam	21/02