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First-order optimization

First-order optimization
Gradient descent and co.
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First-order optimization

First-order optimization

§ Find a minimizer θ‹ P Rd of a given objective function L : Rd Ñ R,

θ‹ P argmin
θPRd

Lpθq

§ Using an iterative algorithm relying on the gradient ∇Lpθtq at each iteration t ě 0.

source: https://distill.pub/2017/momentum/
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First-order optimization

First-order optimization

Iterative optimization algorithms

§ Initialization: θ0 P Rd (important in practice!).

§ Iteration: Usually θt`1 “ φt pθt,∇Lpθtq, stq where st is a hidden variable that is also
updated at each iteration.

§ Stopping time: T ą 0 (also important in practice!).

Main difficulties in neural network training

§ Non-convexity: If L is convex, i.e. @θ, θ1,Lp θ`θ1

2 q ď
Lpθq`Lpθ1q

2 , the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.

§ High dimensionality: number of parameters d " 1000.

§ Access to the gradient: the gradient of L is too expensive to compute! In practice,
∇Lpθtq is replaced by a stochastic or mini-batch approximation r∇t.
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First-order optimization

Loss landscape

Training a neural network requires solving a difficult non-convex optimization problem

min
θPRd

1

N

N
ÿ

i“1

ℓ pgθpxiq, yiq

Ex: loss landscape around the optimum for ResNet-56 trained on CIFAR10.

source: Visualizing the Loss Landscape of Neural Nets. Li et.al., 2018.
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First-order optimization

Types of irregularities

§ Non-convexity,

§ Multiple local minima,

§ Spurious stationary points (e.g. saddle points),

§ Sharp variations (high curvature),

§ Local explosion (large values),

§ Plateaux (flat regions),

§ ...

In general, the regularity of the objective will depend on the architecture of the
neural network, and part of DL research is devoted to finding architecture that are
easy to train.
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First-order optimization

Ideal optimization theory for DL training

§ Should provide fast gradient computation for composition of modules.

§ Should explain performances of non-convex SGD (and its variants).

§ Should work in high-dimensional spaces.

§ Should extend to non-smooth objectives.

§ Should have assumptions that are reasonable for neural networks.
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Automatic differentiation

Automatic differentiation
Differentiating composite functions
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Automatic differentiation

Computation graphs
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Automatic differentiation

Derivative of a composition of functions

Composite function

§ Let f plq : Rdpl´1q

Ñ Rdplq
and gpxq “ gpLqpxq where

gplqpxq “ f plq ˝ ¨ ¨ ¨ ˝ f p2q ˝ f p1qpxq

§ Then, the Jacobian matrix (i.e. matrix of derivatives) of g is

Jgpxq “ Jf pLq

´

gpL´1qpxq

¯

ˆ ¨ ¨ ¨ ˆ Jf p2q

´

gp1qpxq

¯

ˆ Jf p1qpxq

§ What is the computational complexity to compute the Jacobian matrix?
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Automatic differentiation

Simplifying assumptions

Assumptions

§ The input is d-dimensional: dp0q “ d.

§ The output is one dimensional: dpLq “ 1.
§ Each layer l P J1, LK is made of a simple function:

§ The function f plqpxq takes a time TF to compute.
§ Matrix-vector multiplication with the Jacobian Jfplq pxqv or wJfplq pxq takes a time TB to

compute.

Example: linear layers

§ The function is: f plqpxq “ Mx.

§ The Jacobian is: Jf plqpxq “ MJ.

§ Then TF “ TB “ dpl´1qdplq.
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Automatic differentiation

Finite differences approach

Näıve approach

§ The gradient of g can be approximated by finite differences:

∇gpxqi «
gpx ` εeiq ´ gpxq

ε

§ Computational complexity: pd ` 1qLTF proportional to input dimension.

§ Memory cost: maxlPJ1,LK d
plq.

We didn’t use of the fact that g is a composition!
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Automatic differentiation

Matrix multiplication approach

Back to the particular form of the Jacobian

§ We have ∇gpxqJ “ Jf pLq

`

gpL´1qpxq
˘

ˆ ¨ ¨ ¨ ˆ Jf p2q

`

gp1qpxq
˘

ˆ Jf p1qpxq.

§ There are pL ´ 1q! ways to compute products of L matrices.

§ When output is 1-dimensional, most efficient way is from output to input.

Backpropagation algorithm (Rumelhart et al., 1986)

§ We start from the input x0 “ 1 and

xl “ Jf plq

´

gpl´1qpxq

¯J

xl´1

§ The gradient is ∇gpxq “ xL.

§ Computational complexity: LpTF ` TBq.

§ Memory cost:
ř

lPJ0,L´1K d
plq ` maxlPJ0,LK d

plq.
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Automatic differentiation

Sequential networks

Definition (sequential networks)

§ Parameters: Let θ “ pθp1q, . . . , θpLqq P Rp where p “
ř

lPJ1,LK p
plq.

§ Layers: Let f plq : Rdpl´1q

ˆ Rpplq
Ñ Rdplq

.

§ Output: Then let gθpxq “ gpLqpx, θq where gp0qpx, θq “ x and @l P J1, LK,

gplqpx, θq “ f plq
´

gpl´1qpx, θq, θplq
¯
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Automatic differentiation

Derivatives of sequential networks

Chain rule
§ We denote as Jf,xpx, yq the Jacobian matrix of x ÞÑ fpx, yq.

§ To derive w.r.t. θplq, we can treat x and θpkq for k ‰ l as fixed constants. We thus have
a composite function and

Jg,θplqpx, θq “ Jf pLq,xpxpLq, θpLqq ˆ ¨ ¨ ¨ ˆ Jf pl`1q,xpxpl`1q, θpl`1qq ˆ Jf plq,θpxplq, θplqq

where xplq “ gpl´1qpx, θq.
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Automatic differentiation

Finite differences vs. forward vs. backward

Computational complexity

§ Finite differences:

pp ` 1qLTF .

§ Backward propagation:

LpTF ` 2TBq.

Intuition
§ Finite differences requires one function call per parameter.

§ When TF « TB, backprop requires three function calls for the whole gradient.
§ Interpretation as hypothesis testing:

§ Each partial derivative w.r.t. a parameter indicates if this parameter can describe the data.
§ With backprop, we can test all hypotheses (i.e. all parameters) at once.
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Non-convex optimization

Non-convex optimization
Convergence to local/global minima
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Non-convex optimization

Optimizing non-convex functions is hard...

Assumptions

§ The objective function is non-convex, differentiable and β-smooth, i.e. @θ, θ1 P Rd,

}∇Lpθq ´ ∇Lpθ1q}2 ď β}θ ´ θ1}2

§ We access unbiased noisy gradients r∇t where Ep r∇tq “ ∇Lpθtq and varp r∇tq ď σ2.

Proposition (worst-case convergence to global optimum)

For any first-order algorithm, there exists a smooth function L such that approx. error is at
least

Lpθtq ´ Lpθ‹q “ Ωpt´1{dq

This is prohibitive for large dimensional spaces (i.e. d ě 100)!
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Non-convex optimization

Convergence of SGD... to a stationary point

Theorem (convergence of non-convex SGD)

Let L : Rd Ñ R be a smooth function and ∆ “ Lpθ0q ´ Lpθ‹q. Then, SGD with step-size

η “ min
!

1
β ,

b

2∆
Tβσ2

)

achieves the error

E
“

min
tďT

}∇Lpθtq}
‰

ď
4β∆

T
`

c

8β∆σ2

T

§ Convergence in expectation implies cv. with high probability using Markov inequality.

§ Convergence of the best iterate (i.e. smallest gradient norm). :(

§ Without noise, η “ 1{β is optimal, and gives a convergence in Op1{T q.

§ With noise, if η is fixed, there is a lower limit to the error.

§ If η “ Op1{
?
T q gives an optimal convergence in Op1{

?
T q.
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§ If η “ Op1{
?
T q gives an optimal convergence in Op1{

?
T q.
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Non-convex optimization

Convergence to a local minimum

How to obtain local minimum?
§ A local minimum can be defined using second order derivatives:

1. Stationarity: ∇Lpθq “ 0
2. Convexity: the Hessian HLpxq is SDP.

Convergence to a local minimum (Jin et.al., 2017)

§ Adding a small noise allows the parameter to escape saddle points.

§ Additional assumption: the Hessian HL is ρ-Lipschitz w.r.t. spectral norm.

§ With probability at least 1 ´ δ, the number of iterations to reach a gradient norm
}∇Lpθtq} ď ε and near-convexity λ1pHLpθtqq ě ´

?
ρε is bounded by

O

˜

β∆

ε2
log

ˆ

dβ∆

εδ

˙4
¸
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Non-convex optimization

Recap

§ SGD converges to a stationary point in time Opε´2q.

§ SGD + small noise converges to a local minimum in time Opε´2 logpε´1q4q.

§ Convergence to a global minimum impossible in less than Ωpε´dq for smooth functions.

§ We need stronger assumptions on the objective function to go beyond...
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Beyond local minimisation

Beyond local minimisation
The  Lojasiewicz condition
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Beyond local minimisation

A look at the proof of convergence of SGD

§ By smoothness, we have, for θt`1 “ θt ´ ηGt,

EpLpθt`1qq ´ EpLpθtqq ď ´η

ˆ

1 ´
βη

2

˙

Ep}∇Lpθtq}2q `
βη2σ2

2

§ If the gradient is large, then the gradient step improves the function value.

§ When L is α-strongly convex, we have }∇Lpθtq}2 ě 2αpLpθtq ´ Lpθ‹qq.

§ This implies, for εt “ EpLpθtqq ´ EpLpθ‹qq,

εt`1 ď

ˆ

1 ´ 2αη

ˆ

1 ´
βη

2

˙˙

εt `
βη2σ2

2
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Beyond local minimisation

The Polyak- Lojasiewicz condition

Definition (Polyak &  Lojasiewicz, 1963)

A function L : Rd Ñ R is said to verify the µ-Polyak- Lojasiewicz (PL) condition iff

}∇Lpθtq}2 ě µ pLpθtq ´ Lpθ‹qq

where θ‹ P Rd is a global minimum of the function L and µ ą 0 is a constant.

Theorem (convergence of SGD under µ-PL)

If L is β-smooth and verifies the PL condition, then, with η ď 1
β , SGD achieves the precision

LpθT q ´ Lpθ‹q ď ∆

ˆ

1 ´ µη

ˆ

1 ´
βη

2

˙˙T

`
βησ2

2µ
´

1 ´
βη
2

¯

Exponential convergence rate Ope´T q without noise, and OplnpT q{T q otherwise.
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Beyond local minimisation

Beyond strongly convex functions

Is the PL condition satisfied for more than strongly-convex functions?

Examples

§ For Lpθq “ pθ1 ´ cospθ2qq2, we have }∇Lpθq}2 “

4Lpθqp1 ` sinpθ2q2q ě 4Lpθq.

§ More gl. if Lpθq “ gpθq2 and }∇gpθq} ě c for any θ P Rd, then }∇Lpθq}2 ě 4c2Lpθq.

Theorem (PL condition for compositions)

Let Lpθq “ f ˝ gpθq where f satisfies the µ-PL condition and g is such that, @θ P Rd

σmin

´

JgpθqJ
¯

ě ε ,

where σminpMq “ minx‰0 }Mx}{}x} is the smallest singular value of the matrix M . Then
L verifies the µ1-PL condition with µ1 “ µε2.
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Beyond local minimisation

PL for neural networks

Theorem (PL condition for MSE loss)

Let Lpθq “ 1
N

řN
i“1 ℓpgθpxiq, yiq where ℓpy, y1q “ }y ´ y1}22 and the model gθ is such that

σmin

ˆ

´

Jg,θpx1, θqJ
ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ
Jg,θpxN , θqJ

¯

˙

ě ε

then L verifies the µ-PL condition with µ “ 4ε2{N .

§ For over-parameterized neural networks, this quantity is usually controlled for θ “ θ0
(if the weights are properly initialized, see lesson 5), and valid on a neighborhood
around initialization (linked with the Neural Tangent Kernel, see lesson 6). For
example, uniform conditioning (Liu et al., 2020) assumes that the singular value is lower
bounded for all θ P Bpθ0, Rq.
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Beyond smooth minimisation

Beyond smooth minimisation
Smoothing and noise
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Beyond smooth minimisation

Smoothness of the objective

Is the objective function really smooth?

Issues

1. Smoothness usually breaks as θ tends to infinity (e.g. θ ÞÑ θ3 or 3-layer MLPs).

2. MLPs are non-smooth as soon as the activation function is not differentiable (e.g. ReLU
networks).

Solutions

1. PL also provides convergence with local smoothness around initialization.

2. If the model is not locally smooth/differentiable, two solutions:
§ Extend the notion of derivative to Lipschitz functions (Clarke differential).
§ Approximate the objective function with a smooth function.
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Beyond smooth minimisation

Randomized smoothing

Definition (Duchi et.al., 2011)

Let f : Rd Ñ R be a function and γ ą 0. Then, let fγ : Rd Ñ R be defined as

fγpθq “ Epfpθ ` γXqq

where X „ N p0, Idq is a Gaussian random variable.

Theorem

If f is L-Lipschitz, then fγ is L{γ-smooth and fpθq ď fγpθq ď fpθq ` γL
?
d.

§ Randomized smoothing transforms a Lipschitz function into a smooth function!

§ We can then apply SGD and use previous convergence results.
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Beyond smooth minimisation

Randomized smoothing

Approximation of the smooth gradient

§ The gradient of the smooth function is ∇fγpθq “ Ep∇fγpθ ` γXqq.

§ Can be approximated by p∇fpθq “ 1
K

ř

kPJ1,KK ∇fγpθ ` γXkq where Xk „ N p0, Idq are
i.i.d. Gaussian r.v.

§ Adds a gradient noise of variance

σ2 “
var p∇fγpθ ` γXqq

K
ď

L2

K

§ Usually we take K9T to obtain convergence.
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Beyond smooth minimisation

Recap

§ The loss lanscape of DL training is non-convex and potentially difficult to optimize.

§ Convergence to a global minimum for any smooth function is prohibitive in
high-dimensional spaces (exponential in d).

§ SGD (+ noise) can converge, within an error ε ą 0, to a local minimum of any smooth
function in roughly Opε´2q iterations.

§ By relaxing the convexity constraint to a PL condition, one can obtain convergence to
the global optimum.

§ The PL condition is verified for neural networks whose singular values of the Jacobian are
bounded from below.
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