Mathematics of Deep Learning

Non-convex optimization

Lessons: Kevin Scaman
TDs: Mathieu Even

Pauphine | PSL%*

UNIVERSITE PARIS

MASH Master 2, PSL Mathematics of Deep Learning, 2023



Introduction and motivation

Introduction and general overview 03/01
Non-convex optimization 10/01
Structure of ReLU networks and group invariances 17/01
Approximation guarantees 24/01
Stability and robustness 31/01
Infinite width limit of NNs 07/02
Generative models 14/02
Exam 21/02

MASH Master 2, PSL Mathematics of Deep Learning, 2023 2/32



First-order optimization

First-order optimization

Gradient descent and co.
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First-order optimization

Find a minimizer 6* € R? of a given objective function £ : R — R,

0* € argmin £(6)
HeRd

Using an iterative algorithm relying on the gradient VL(6;) at each iteration t > 0.

Starting Point

source: https://distill.pub/2017/momentum/
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First-order optimization

Iterative optimization algorithms
Initialization: 6, € R? (important in practice!).

Iteration: Usually 0,11 = ¢, (0, VL(0;), s;) where s; is a hidden variable that is also
updated at each iteration.

Stopping time: 7' > 0 (also important in practice!).
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Iteration: Usually 0,11 = ¢, (0, VL(0;), s;) where s; is a hidden variable that is also
updated at each iteration.

Stopping time: 7' > 0 (also important in practice!).

Main difficulties in neural network training

Non-convexity: If £ is convex, i.e. VG,G’,E((’*TG') < w, the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.
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First-order optimization

Iterative optimization algorithms
Initialization: 6, € R? (important in practice!).

Iteration: Usually 0,11 = ¢, (0, VL(0;), s;) where s; is a hidden variable that is also
updated at each iteration.

Stopping time: 7' > 0 (also important in practice!).

Main difficulties in neural network training
Non-convexity: If £ is convex, i.e. VG,G’,E((’*TG') < w, the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.
High dimensionality: number of parameters d » 1000.

Access to the gradient: the gradient of £ is too expensive to compute! In practice,
VL(6;) is replaced by a stochastic or mini-batch approximation V.
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First-order optimization

Training a neural network requires solving a difficult non-convex optimization problem

ﬁ{g— Zf g0(:), ys)

Ex: loss landscape around the optimum for ResNet-56 trained on CIFAR10.

(a) without skip connections (b) with skip connections

source: Visualizing the Loss Landscape of Neural Nets. Li et.al., 2018.
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First-order optimization

Types of irregularities

» Non-convexity,
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First-order optimization

» Non-convexity,

» Multiple local minima,
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First-order optimization

> Non-convexity,
» Multiple local minima,

> Spurious stationary points (e.g. saddle points),

MASH Master 2, PSL Mathematics of Deep Learning, 2023 7/32



First-order optimization

Non-convexity,
Multiple local minima,
Spurious stationary points (e.g. saddle points),

Sharp variations (high curvature),
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First-order optimization

Non-convexity,

Multiple local minima,

Spurious stationary points (e.g. saddle points),
Sharp variations (high curvature),

Local explosion (large values),
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First-order optimization

Non-convexity,

Multiple local minima,

Spurious stationary points (e.g. saddle points),
Sharp variations (high curvature),

Local explosion (large values),

Plateaux (flat regions),

neural network, and part of DL research is devoted to finding architecture that are

j In general, the regularity of the objective will depend on the architecture of the
easy to train.

MASH Master 2, PSL Mathematics of Deep Learning, 2023 7/32



First-order optimization

Should provide fast gradient computation for composition of modules.
Should explain performances of non-convex SGD (and its variants).
Should work in high-dimensional spaces.

Should extend to non-smooth objectives.

Should have assumptions that are reasonable for neural networks.
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Automatic differentiation

Automatic differentiation

Differentiating composite functions
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Automatic differentiation

Complex neural network architecture (e.g. AlphaFold)

Tomplates

Evoformer
48 blocks)

High
confidence

MASH Master 2, PSL

Mathematics of Deep Learning, 2023
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Automatic differentiation

Complex neural network architecture (e.g. AlphaFold) Code (e.g. Python)

z1 =x *y
z2 = x ** 2
z3 exp(zl)

Orrrece

z4 = 2 * z2
z5 z3 + z4

e ] out = sin(z5)

MASH Master 2, PSL
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Automatic differentiation

Complex neural network architecture (e.g. AlphaFold) Code (e.g. Python)

z1 =x *y
Z2N=IXEE D
z3 exp(zl)

z4 = 2 * z2
)t J — 725 z3 + z4

: out = sin(z5)

= Recycling (hree times)

Computation graph (DAG of mathematical operations)

-
5
X
2 xy e
2
x+y sin(x) =
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x
= 2
ES x 2x
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Automatic differentiation

X e fO )

\ 4

fAR) e fO(x) e g(x)

Composite function

- Let fO RV o RAY and g(x) = g'B)(z) where

g(l) (z) = f(l) 0.0 f(2) o f(l)(:c)
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Automatic differentiation

x fO A F®B ) 9x)

Composite function

Let fO R L RIY and g(x) = g'B)(z) where

g(l) (z) = f(l) 0.0 f(2) o f(l)(:c)

Then, the Jacobian matrix (i.e. matrix of derivatives) of g is

Jg(2) = Ty (Q(L_l)(ﬂf)) X oo X Jp) (g(l)(ﬂf)) x J s (2)
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Automatic differentiation

x fO A F®B ) 9x)

Composite function

Let fO R L RIY and g(x) = g'B)(z) where

g(l) (z) = f(l) 0.0 f(2) o f(l)(:c)

Then, the Jacobian matrix (i.e. matrix of derivatives) of g is

Jg(2) = Ty (Q(L_l)(ﬂf)) X oo X Jp) (9(1)(93)) x J s (2)

What is the computational complexity to compute the Jacobian matrix?
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Automatic differentiation

Assumptions
The input is d-dimensional: d©) = d.
The output is one dimensional: d&) = 1.

Each layer [ € [1, L] is made of a simple function:

The function f()(z) takes a time T to compute.
Matrix-vector multiplication with the Jacobian me(x)v or wam(x) takes a time Tz to
compute.
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Automatic differentiation

Assumptions
The input is d-dimensional: d(©) = d.
The output is one dimensional: d&) = 1.

Each layer [ € [1, L] is made of a simple function:

The function f()(z) takes a time T to compute.
Matrix-vector multiplication with the Jacobian me(x)v or wam(x) takes a time Tz to
compute.

Example: linear layers
The function is: f((x) = M.
The Jacobian is: Jw(z) = M.
Then T = T = d=Dd().
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Automatic differentiation

Naive approach

» The gradient of g can be approximated by finite differences:

glx + ee;) — g(x)

V() ~
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Automatic differentiation

Naive approach
The gradient of g can be approximated by finite differences:

glx + ee;) — g(x)

V() ~ 5

Computational complexity: (d + 1) LT proportional to input dimension.

Memory cost: maxe[y, ] d®.

A We didn’t use of the fact that g is a composition!
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Automatic differentiation

Back to the particular form of the Jacobian
>~ We have Vg(z)" = Jpw) (g(L‘l)(x)) X oo % Jp) (g(l)(m)) x Jpa ().
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Automatic differentiation

Back to the particular form of the Jacobian
We have Vg(z)" = Jpw) (g(Lfl)(x)) X oo % Jp) (g(l)(m)) x J ().
There are (L — 1)! ways to compute products of L matrices.

When output is 1-dimensional, most efficient way is from output to input.
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Automatic differentiation

Back to the particular form of the Jacobian
We have Vg(z)" = Jpw) (g(Lfl)(:c)) X oo % Jp) (g(l)(x)) x J ().
There are (L — 1)! ways to compute products of L matrices.

When output is 1-dimensional, most efficient way is from output to input.

Backpropagation algorithm (Rumelhart et al., 1986)
We start from the input zg = 1 and

.
r = Jro <9(l_1)(1‘)> Ty

The gradient is Vg(x) = xr.
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Automatic differentiation

Back to the particular form of the Jacobian
We have Vg(z)" = Jpw) (g(Lfl)(x)) X oo % Jp) (g(l)(x)) x J ().
There are (L — 1)! ways to compute products of L matrices.

When output is 1-dimensional, most efficient way is from output to input.

Backpropagation algorithm (Rumelhart et al., 1986)
We start from the input zg = 1 and

.
r = Jro <g(l_1)(1‘)> Ty

The gradient is Vg(x) = xr.
Computational complexity: L(Tr + Tg).
Memory cost: > cro.1,—1] dV + maxgepo ry dV.
14/32



Automatic differentiation

F21€9) 0@ gw

. FO(x, 0) Jilex) O, 6) 9o (%)

Definition (sequential networks)
Parameters: Let 0 = (0(1),...,0)) € R where p = >cp 1.

Layers: Let O : RV x RPY — RAY.
Output: Then let go(2) = g'P)(x,0) where ¢ (x,0) = 2 and Vi € [1, L],

g0(z,6) = O (4V(x,6),60)
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Automatic differentiation

PIe) PIO) oW

X f(l) (x, 9) f(2) (x, 9) f(L) (x, 6) Jdo (x)

Chain rule
We denote as J¢,(x,y) the Jacobian matrix of z — f(x,y).

To derive w.r.t. 1), we can treat = and 0%) for k # [ as fixed constants. We thus have
a composite function and
ngg(l)(w,e) = Jf@)’x(:c(L),e(L)) X o X Jf(z+1)7w(x(l+1),9(l+l)) X Jf(z)ve(x(l),H(l))

where () = g(=1(z, 9).
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Automatic differentiation

Computational complexity
> Finite differences:

» Backward propagation:
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Automatic differentiation

Computational complexity
> Finite differences: (p + 1)LTp.

» Backward propagation:
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Automatic differentiation

Computational complexity
> Finite differences: (p + 1)LTp.
» Backward propagation: L(Tr + 215).
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Automatic differentiation

Computational complexity
Finite differences: (p + 1)LTF.
Backward propagation: L(Tr + 2T5R).

Intuition
Finite differences requires one function call per parameter.
When Ty ~ T, backprop requires three function calls for the whole gradient.
Interpretation as hypothesis testing:

Each partial derivative w.r.t. a parameter indicates if this parameter can describe the data.
With backprop, we can test all hypotheses (i.e. all parameters) at once.
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Non-convex optimization

Non-convex optimization

Convergence to local/global minima

MASH Master 2, PSL Mathematics of Deep Learning, 2023



Non-convex optimization

Assumptions

The objective function is non-convex, differentiable and 3-smooth, i.e. V6,6 € R?,
VL) —VLE )2 < B0 — 8|2

We access unbiased noisy gradients V; where E(V;) = VL(6;) and var(V,) < o2.
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Non-convex optimization

Assumptions

The objective function is non-convex, differentiable and 3-smooth, i.e. V6,6 € R?,
IVL®) = VLEO )2 < BI6 — 0|2
We access unbiased noisy gradients V; where E(V;) = VL(6;) and var(V,) < o2.

Proposition (worst-case convergence to global optimum)

For any first-order algorithm, there exists a smooth function £ such that approx. error is at
least
L(6:) — L(6%) = Q™)

A This is prohibitive for large dimensional spaces (i.e. d = 100)!
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Non-convex optimization

Theorem (convergence of non-convex SGD)

Let £:R? — R be a smooth function and A = L£(6y) — £(6*). Then, SGD with step-size

7 = min {%, T%éz} achieves the error

. 48A 8BAc2
E[min [VLO)] < =7 +4/ =7
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Non-convex optimization

Theorem (convergence of non-convex SGD)

Let £:R? — R be a smooth function and A = L£(6y) — £(6*). Then, SGD with step-size

7 = min {%, T2ﬁ%2} achieves the error

. 48A 8BAc2
E[min [VLO)] < =7 +4/ =7

Convergence in expectation implies cv. with high probability using Markov inequality.

Convergence of the best iterate (i.e. smallest gradient norm). :(
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Non-convex optimization

Theorem (convergence of non-convex SGD)

Let £:R? — R be a smooth function and A = L£(6y) — £(6*). Then, SGD with step-size

7 = min {%, T2ﬁ%2} achieves the error

. 48A 8BAc2
E[min [VLO)] < =7 +4/ =7

Convergence in expectation implies cv. with high probability using Markov inequality.

Convergence of the best iterate (i.e. smallest gradient norm). :(

Without noise, n = 1/3 is optimal, and gives a convergence in O(1/T).
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Non-convex optimization

Theorem (convergence of non-convex SGD)
Let £:R? — R be a smooth function and A = L£(6y) — £(6*). Then, SGD with step-size

7 = min {%, T2ﬁ%2} achieves the error

. 48A 8BAc2
E[min [VLO)] < =7 +4/ =7

Convergence in expectation implies cv. with high probability using Markov inequality.
Convergence of the best iterate (i.e. smallest gradient norm). :(
Without noise, n = 1/ is optimal, and gives a convergence in O(1/T).

With noise, if ) is fixed, there is a lower limit to the error.
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Non-convex optimization

Theorem (convergence of non-convex SGD)
Let £:R? — R be a smooth function and A = L£(6y) — £(6*). Then, SGD with step-size

7 = min {%, T%%z} achieves the error

. 48A 8BAc2
E[min [VLO)] < =7 +4/ =7

Convergence in expectation implies cv. with high probability using Markov inequality.
Convergence of the best iterate (i.e. smallest gradient norm). :(

Without noise, n = 1/ is optimal, and gives a convergence in O(1/T).

With noise, if ) is fixed, there is a lower limit to the error.

If n = O(1/V/T) gives an optimal convergence in O(1/v/T).
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Non-convex optimization

How to obtain local minimum?

A local minimum can be defined using second order derivatives:
Stationarity: VL(0) =0
Convexity: the Hessian H(z) is SDP.
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Non-convex optimization

How to obtain local minimum?
A local minimum can be defined using second order derivatives:

Stationarity: VL(0) =0
Convexity: the Hessian H(z) is SDP.

Convergence to a local minimum (Jin et.al., 2017)
Adding a small noise allows the parameter to escape saddle points.
Additional assumption: the Hessian H is p-Lipschitz w.r.t. spectral norm.

With probability at least 1 — 9, the number of iterations to reach a gradient norm
|VL(6:)|| < e and near-convexity A\i(H(6:)) = —./pe is bounded by

BA dBAN?
© <—2 o8 (—5) )
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Non-convex optimization

SGD converges to a stationary point in time O(c2).
SGD + small noise converges to a local minimum in time O(e~2log(e71)4).
Convergence to a global minimum impossible in less than (¢¢) for smooth functions.

We need stronger assumptions on the objective function to go beyond...
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Beyond local minimisation

Beyond local minimisation

The tojasiewicz condition
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Beyond local minimisation

» By smoothness, we have, for 6,11 = 0; — nGy,

20.2
B(C(Or) ~ BC6) < -0 (1= 51 ) BUVE@E)?) + P57
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Beyond local minimisation

By smoothness, we have, for 0;,1 = 0; — nGt,

20.2
B(C(Or) ~ BC6) < -0 (1= 51 ) BUVE@E)?) + P57

If the gradient is large, then the gradient step improves the function value.
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Beyond local minimisation

By smoothness, we have, for 0;,1 = 0; — nGt,

20.2
B(C(Or) ~ BC6) < -0 (1= 51 ) BUVE@E)?) + P57

If the gradient is large, then the gradient step improves the function value.
When L is a-strongly convex, we have |[VL(6;)|]> = 2a(L(6;) — L(6*)).
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Beyond local minimisation

By smoothness, we have, for 0;,1 = 0; — nGt,

20.2

B(C(Or) ~ BC6) < -0 (1= 51 ) BUVE@E)?) + P57

If the gradient is large, then the gradient step improves the function value.
When L is a-strongly convex, we have |[VL(6;)|]> = 2a(L(6;) — L(6*)).
This implies, for e, = E(L(6:)) — E(L(0%)),

2 .2
gt+1 < <1 — 20577 (1 — %)) gt + 67720-
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Beyond local minimisation

Definition (Polyak & tojasiewicz, 1963)
A function £ : R? — R is said to verify the y-Polyak-tojasiewicz (PL) condition iff

IVLO)? = 1 (L(8:) — L£(67))

where 6* € R? is a global minimum of the function £ and x> 0 is a constant.
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Beyond local minimisation

Definition (Polyak & tojasiewicz, 1963)
A function £ : R? — R is said to verify the y-Polyak-tojasiewicz (PL) condition iff

VL) = 1 (L) — L£(67))
where 6* € R? is a global minimum of the function £ and x> 0 is a constant.

Theorem (convergence of SGD under p-PL)

If £ is S-smooth and verifies the PL condition, then, with n < % SGD achieves the precision

L(0r) = £(07) < A (1_/“7 (1_ %))T+ 2“577—62@2)
)

Exponential convergence rate O(e~7) without noise, and O(In(T")/T) otherwise.
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Beyond local minimisation

Is the PL condition satisfied for more than strongly-convex functions?

Examples
» For 5(0) = (91 — COS(QQ))2, we have ||V£(9)”2 =
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Beyond local minimisation

A Is the PL condition satisfied for more than strongly-convex functions?

Examples
» For L(0) = (61 — cos(h2))?, we have |[VL()|? =4L(0)(1 + sin(6a)?) = 4L(0).
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Beyond local minimisation

A Is the PL condition satisfied for more than strongly-convex functions?

Examples
For £(6) = (61 — cos(62))?, we have |[VL(0)]|? =4L(0)(1 + sin(02)?) = 4L().
More gl. if £(8) = g(6)? and [|[Vg(0)| = c for any 8 € R?, then |VL(0)|?> = 4c2L(0).
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Beyond local minimisation

A Is the PL condition satisfied for more than strongly-convex functions?

Examples
For £(6) = (61 — cos(62))?, we have |[VL(0)]|? =4L(0)(1 + sin(02)?) = 4L().
More gl. if £L(0) = g(0)? and |Vg(0)|| = c for any 6 € R?, then |[VL(0)|> = 4c2L(0).

Theorem (PL condition for compositions)

Let £(8) = f o g(§) where f satisfies the u-PL condition and g is such that, V0 € R?

owin(14(0)T) > €,

where oin (M) = ming .o [|Mz|/|z] is the smallest singular value of the matrix A/. Then
L verifies the y/-PL condition with 1/ = ue?.
26/32



Beyond local minimisation

Theorem (PL condition for MSE loss)
Let £L(9) = %Zfil €(go (), y;) where £(y,y') = |y — /|3 and the model gy is such that

O'min<<Jg’9(.’L‘1,0)T ‘ ‘ Jg,e(xN,G)T>> >

then L verifies the u-PL condition with y = 4¢2/N.
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Beyond local minimisation

Theorem (PL condition for MSE loss)
Let £L(9) = %Zf\; €(go (), y;) where £(y,y') = |y — /|3 and the model gy is such that

Umm(<Jg’9(3101,9)T ‘ ‘ Jg,e(xN,G)T)> >

then L verifies the u-PL condition with y = 4¢2/N.

For over-parameterized neural networks, this quantity is usually controlled for 6 = 6
(if the weights are properly initialized, see lesson 5), and valid on a neighborhood
around initialization (linked with the Neural Tangent Kernel, see lesson 6). For
example, uniform conditioning (Liu et al., 2020) assumes that the singular value is lower

bounded for all 6 € B(6, R).
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Beyond smooth minimisation

Beyond smooth minimisation

Smoothing and noise
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Beyond smooth minimisation

A Is the objective function really smooth?

Issues
Smoothness usually breaks as @ tends to infinity (e.g. 6 +— 63 or 3-layer MLPs).

MLPs are non-smooth as soon as the activation function is not differentiable (e.g. ReLU
networks).
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Beyond smooth minimisation

A Is the objective function really smooth?

Issues
Smoothness usually breaks as @ tends to infinity (e.g. 6 +— 63 or 3-layer MLPs).

MLPs are non-smooth as soon as the activation function is not differentiable (e.g. ReLU
networks).

Solutions
PL also provides convergence with local smoothness around initialization.
If the model is not locally smooth /differentiable, two solutions:

Extend the notion of derivative to Lipschitz functions (Clarke differential).
Approximate the objective function with a smooth function.
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Beyond smooth minimisation

Definition (Duchi et.al., 2011)
Let f: R? — R be a function and v > 0. Then, let fy: R? — R be defined as

f7(0) = E(f(0 +~X))

where X ~ N(0, I;) is a Gaussian random variable.
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Beyond smooth minimisation

Definition (Duchi et.al., 2011)
Let f: R? — R be a function and v > 0. Then, let fy: R? — R be defined as

f7(0) = E(f(0 +~X))

where X ~ N(0,1;) is a Gaussian random variable.

Theorem
If fis L-Lipschitz, then f7 is L/v-smooth and f(#) < f¥(0) < f(#) + vLVd.

Randomized smoothing transforms a Lipschitz function into a smooth function!

We can then apply SGD and use previous convergence results.
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Beyond smooth minimisation

Approximation of the smooth gradient
The gradient of the smooth function is V f7(0) = E(V f7(0 + vX)).

Can be approximated by V() = + ket k] VS0 + X)) where Xj ~ N(0,1;) are
i.i.d. Gaussian r.v.

Adds a gradient noise of variance

2
,2_ var (V10 +~X)) < L
K K

Usually we take KocT' to obtain convergence.
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Beyond smooth minimisation

The loss lanscape of DL training is non-convex and potentially difficult to optimize.

Convergence to a global minimum for any smooth function is prohibitive in
high-dimensional spaces (exponential in d).

SGD (4 noise) can converge, within an error € > 0, to a local minimum of any smooth
function in roughly O(s2) iterations.

By relaxing the convexity constraint to a PL condition, one can obtain convergence to
the global optimum.

The PL condition is verified for neural networks whose singular values of the Jacobian are
bounded from below.
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