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ReLU networks

ReLU networks
Shape and structure of the output
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ReLU networks

ReLU networks (recap)

Definition (MLP)

Let L ě 1, pdplqqlPJ0,LK P N˚L`1, and σpxq “ maxt0, xu. A ReLU network is an MLP with
ReLU activations, i.e. :

gθpxq “ f p2L´1q ˝ f p2L´2q ˝ ¨ ¨ ¨ ˝ f p2q ˝ f p1qpxq

where @l P J1, LK, f p2l´1qpxq “ W plqx` bplq, f p2lqpxq “ σpxq, W plq P Rdplqˆdpl´1q

,

bplq P Rdplq
.
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ReLU networks

Simple properties

Definition (ReLU networks)

For d, d1 ą 0, let ReLUd,d1 be the space of all ReLU networks s.t. dp0q “ d and dpLq “ d1.

Lemma (stability)

ReLUd,d is stable by addition and composition. That is, @g, g1 P ReLUd,d,

g ` g1 P ReLUd,d and g ˝ g1 P ReLUd,d

Lemma (continuity and piecewise linearity)

A ReLU network is continuous and piecewise linear.

Proof.

By continuity and piecewise linearity of a composition of continuous and piecewise linear
functions.
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ReLU networks

Structure of ReLU networks in practice

ReLU networks create affine regions

§ Case of two layers and dp2q “ 1: gθpxq “
ř

iw
p2q

i σpxw
p1q

i , xy ` biq ` c

§ Each ReLU activation can create a new affine region.

§ A large number of regions are created by the network.

§ Example of affine regions of a ReLU network trained on MNIST:

(image credits: Hanin & Rolnik, 2019)
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ReLU networks

Piecewise linear approximations

Definition (piecewise linearity)

A function f : Rd Ñ Rd1

is a continuous piecewise linear function if there exists a finite
set of closed and connected regions pPkqkPJ1,mK Ă PpRdq such that YkPJ1,mKPk “ Rd and,

for all k P J1,mK, f is affine on Pk, i.e. there exists Wk P Rd1ˆd, bk P R s.t. @x P Pk,
fpxq “ Wkx` bk.

§ We denote as number of regions of f the minimum number
m of regions pPkqkPJ1,mK such that f is affine on them.

§ As the Pk are closed, the function is necessarily continuous.

§ As the number of regions is finite, the maximal regions are
also polytopes.

(image credits: Wikipedia)
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ReLU networks

Piecewise linear approximations

Theorem (Arora et.al., 2018)

Every ReLU network is piecewise linear, and every continuous piecewise linear function
f : Rd Ñ R can be represented by a ReLU network with at most rlog2pd` 1qs ` 1 depth.

Proof.
§ ReLU networks are continuous and piecewise linear by construction.

§ The other side is based on a universal representation of piecewise-linear functions:
fpxq “

ř

j sj maxiPSj ℓipxq where sj P t´1, 1u, Sj Ă J1,KK and tℓiuiPJ1,KK are K affine
functions.

§ See Exercise. ,
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ReLU networks

What next?

Model complexity

§ We saw that a depth of rlog2pd` 1qs ` 1 is sufficient for any function with d regions.

§ It does not say how this constructed network deals with approximation and noise.

§ It does not say how to design the ReLU network in practice
(decreasing/constant/increasing layer size?).

§ The number of regions can be used as a proxy for complexity of the model.

This notion of complexity is not perfect, as the linear regions are not independent...
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ReLU networks

Number of piecewise linear regions (case L “ 2)

Theorem (Arora et.al., 2018)

Given any piecewise linear function f : R Ñ R with m ě 2 pieces there exists a 2-layer
ReLU network with at most dp1q ď m that can represent f . Moreover, any 2-layer ReLU
network that represents f has size at least dp1q ě m´ 1.

Proof.

§ First, if fpxq “
řdp1q

i“1 w
p2q

i σpw
p1q

i x` biq ` c and has m regions, then f has m´ 1
breaking points. However, the number of non-differentiable points is smaller than dp1q.

§ Recursively: for m “ 2, fpxq “ a1σpx´ x0q ´ a2σpx0 ´ xq ` fpx0q.

§ If OK for m and f has m` 1 regions, we take the last breaking point xm and remove it
from f by taking gpxq “ fpxq ´ pam`1 ´ amqσpx´ xmq and apply recursion.
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ReLU networks

Number of piecewise linear regions (case L ą 2)

§ Adding a neuron in a layer tends to add a new affine region.

§ Adding a layer tends to multiply the number of affine regions.

Simple bound

§ Each ReLU activation creates a halfspace cut.

§ This multiplies at most the number of regions by 2.

§ We thus have m ď 2D where D “
řL´1

i“1 d
piq is the number of ReLU activations.

§ There are ReLU networks that achieve such an exponential number of regions.
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ReLU networks

Number of piecewise linear regions (case L ą 2)

Hyperplane arrangements (Zaslavsky, 1975)

The number of regions defined by n hyperplanes in Rd is at most
řd

i“0

`

n
i

˘

.

More refined bound (Raghu et al., 2017)

§ Each activation layer can be seen as dplq hyperplanes in a space of dimension dpl´1q.

§ At most, each of these
řdpl´1q

i“0

`

dplq

i

˘

regions contain all the regions created by the
previous layers, hence

m ď

L´1
ź

l“1

dpl´1q
ÿ

i“0

ˆ

dplq

i

˙
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ReLU networks

Recap

§ ReLU networks encode continuous and piece-linear functions.

§ Only rlog2pd` 1qs ` 1 layers are needed to encode any piece-linear function.

§ Complexity of the function measured by the number m of pieces, and

m ď

L´1
ź

l“1

dpl´1q
ÿ

i“0

ˆ

dplq

i

˙

§ As piece-wise linear function can approximate any continuous function, ReLU networks
do not assume any specific structure or invariance on the data.

ReLU networks with rlog2pd` 1qs ` 1 layers may not be easily trained!
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Group invariances and CNNs

Group invariances and CNNs
Invariance and equivariance to input transformations
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Group invariances and CNNs

Invariances in object recognition tasks

Ideally, we would like an architecture that does not depend on orientation, scale, position,
lighting conditions,... of the object.
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Group invariances and CNNs

Invariances beyong image recognition

Prior information hardwired in the architecture
§ Inductive biases play a key role in the performance of DL models

§ Times series: translations, periodicity, symmetry, causality

§ Graphs: permutations of the indices
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Group invariances and CNNs

Importance of inductive bias

Bits as universal representations

§ All data that is stored on a hard drive can be represented as a sequence of 0s and 1s...

§ ... but RNNs are not the solution to everything!

§ Imposing the right bias is vital to help the model learn the right patterns, structures
and invariances.
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Group invariances and CNNs

Practical example: AlphaFold 2

§ Objective: find the 3D structure of a protein based on its amino acid sequence.

§ Invariance: the output is invariant by translation and rotation.
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Group invariances and CNNs

Transformations of the input space

§ FpX ,Yq is the space of functions f : X Ñ Y from input space X to output space Y.

§ We denote as transformation a function τ P FpX ,X q mapping X to itself.

§ We denote as T Ă FpX ,X q a set of transformations of the (input) space X .

Examples

§ Translations by a vector: T “ tτcuc PRd s.t. @x P Rd, τcpxq “ x` c.

§ Rotations of complex numbers: T “ tτθuθPr0,2πq s.t. @x P C, τθpxq “ xeiθ.

§ Projections on the coordinates: T “ tτiuiPJ1,dK s.t. @x P Rd, τipxq “ xiei.

A transformation is not necessarily bijective!
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Group invariances and CNNs

Invariance and equivariance

Definition (invariance)

A function f : X Ñ Y is invariant w.r.t. the transformations T iff, for all x P X and τ P T ,

f ˝ τpxq “ fpxq

Definition (equivariance)

A function f : X Ñ X is equivariant w.r.t. the transformations T iff, for all x P X and
τ P T ,

f ˝ τpxq “ τ ˝ fpxq

In other words, f commutes with τ .
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Group invariances and CNNs

Invariance and equivariance

Lemma (equivalence graph)

Let G “ pV,Eq be the graph defined by V “ X and tx, yu P E if and only if Dτ P T
s.t. τpxq “ y or τpyq “ x. Then, a fuction is T -invariant if and only if it is constant on the
connected components of G.

Lemma (generated group)

A function invariant (resp. equivariant) to a set of bijective transformations T is also
invariant (resp. equivariant) to the group of transformations generated by T and
composition.
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Group invariances and CNNs

Group actions

Definition (group actions)

A group G acting on a space X is a mapping τ : G ˆX Ñ X that verifies (with the notation
τg P FpX ,X q s.t. τgpxq “ τpg, xq):

1. Identity: if e P G is the identity element, then τe “ Id.

2. Compatibility: @g, h P G, we have τg ˝ τh “ τgh.

This action defines a set of transformations TG “ tτgugPG .

Examples

§ Periodicity: G “ Z and τkpxq “ x` kv where v ą 0 is the period.

§ Permutation: G “ Sd and τσpxqi “ xσpiq where σ P Sd is a permutation of the indices.
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Group invariances and CNNs

Back to images

Transformation of the input ‰ transformation of the underlying space!

Functions as input

§ Often, the input is itself a function, e.g. pixels of an image, intensity of a signal...

§ We thus have X “ FpS,Rdq, where S is the (usually finite) underlying space.

Examples

§ Sets: S “ J1, NK. Then, x “ pxiqiPJ1,NK.

§ Images: S “ J1, NK ˆ J1,MK and d “ 3. Then,
x “ pxijqiPJ1,NK,jPJ1,MK.

§ Infinite images: S “ R2 and d “ 3. Then, x : R2 ÞÑ R3.

§ Time series: S “ R. Then, x : R ÞÑ Rd.
MASH Master 2, PSL Mathematics of Deep Learning, 2023 23/31



Group invariances and CNNs

From underlying space to input space

Lemma

If G is a group acting on S and tτgu are the associated transformations, then we can define
an action on FpS,Rdq via:

τ 1
gpfqpxq “ fpτgpxqq

Examples

§ For example, the group of 2D rotations
induces a group of transformations on the
images.
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Group invariances and CNNs

Generic architecture for invariant neural networks

A (näıve) recipe for invariant neural networks

§ A simple solution to create invariant neural networks is to sum or average over all
transformations:

finvpxq “
ÿ

τPT
fpτpxqq

§ Ok for small transformation sets, prohibitive in most cases (permutations: |Sn| “ n!).

§ A more tractable alternative is to take one transformation at random. Can lead to a
large variance, and weak theoretical guarantees.

§ In practice, we often augment the dataset Dn “ tpxi, yiquiPJ1,nK with transformed inputs:

D1
n “ tpτpxiq, yiquiPJ1,nK,τPT

§ Drawback: Increases training time and size of the model.
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Group invariances and CNNs

Generic architecture for invariant neural networks

A (better) recipe for invariant neural networks

§ Sequence of equivariant operations (usually affine + activations).

§ Final invariant operation.

§ In practice, we need to design equivariant affine layers (activation are usually ok).
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Group invariances and CNNs

The case of translation equivariance (finite setting)

To simplify our analysis, we consider translations on the discrete circle: S “ J1, NK and, for
any translation distance u P J1, NK and any input x P RN ,

τupxqi “ xi`urNs

Lemma (convolutions)

The only linear functions that are translation equivariant w.r.t. the underlying space
S “ J1, NK are the convolutions.

Proof.
§ By linearity, we have fpxqi “

ř

j Mi,jxj .

§ Then, by invariance,
ř

j Mi,jxj`urNs “
ř

j Mi`urNs,jxj and @i, j, u,

Mi,j “ Mi`urNs,j`urNs

MASH Master 2, PSL Mathematics of Deep Learning, 2023 27/31



Group invariances and CNNs

The case of translation equivariance (finite setting)

To simplify our analysis, we consider translations on the discrete circle: S “ J1, NK and, for
any translation distance u P J1, NK and any input x P RN ,

τupxqi “ xi`urNs

Lemma (convolutions)

The only linear functions that are translation equivariant w.r.t. the underlying space
S “ J1, NK are the convolutions.

Proof.
§ By linearity, we have fpxqi “

ř

j Mi,jxj .

§ Then, by invariance,
ř

j Mi,jxj`urNs “
ř

j Mi`urNs,jxj and @i, j, u,

Mi,j “ Mi`urNs,j`urNs

MASH Master 2, PSL Mathematics of Deep Learning, 2023 27/31



Group invariances and CNNs

The case of translation equivariance (continuous setting)

We now consider translation on the plane: S “ R2 and, for any translation vector v P R2 and
any input image x : R2 Ñ R, τvpxq : u ÞÑ xpu` vq. As the input space is infinite dimensional,
we limit ourselves to integral operators of the form: fpxq : u ÞÑ

ş

wKpu,wqxpwqdw.

Convolutions as equivariant integral operators

The only integral operators that are translation equivariant w.r.t. the underlying space
S “ R2 are the convolutions.

Proof.

§ We have f ˝ τvpxqpuq “
ş

wKpu,wqxpw ` vqdw “
ş

wKpu,w ´ vqxpwqdw.

§ We have τv ˝ fpxqpuq “
ş

wKpu` v, wqxpwqdw.

§ As the two terms should be equal for any function x, we have, @u,w,
Kpu,wq “ Kpu´ v, 0q and f is a convolution:

fpxq “ Kp ¨ , 0q ˚ x
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Group invariances and CNNs

The case of permutation invariance

We now consider permutation of indices: S “ Sn and τσpxqi “ xσpiq.

Permutation equivariant affine layers

§ If we use the same method, fpxq “
ř

j Mijxj , we get Mij “ Mkl if i ‰ j and k ‰ l

§ This is quite restrictive, as we only have two parameters per layer...

DeepSet (Zaheer et.al., 2017)

§ Instead, we put the complexity in the activation:

gθpxq “ ψ

˜

ÿ

i

ϕpxiq

¸

§ The functions ϕ and ψ are usually MLPs and contain the parameters of the model.

§ This is sufficient to represent any permutation invariant function.
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Group invariances and CNNs

Graph neural networks (GNN)

Message passing schemes

§ Relies on the transfer of messages between neighbors
§ Composed of three steps:

§ Initialization: Graph G “ pV,Eq, node attributes ui,0 P Rd.
§ Aggregation: ui,l`1 “ ϕlpui,l, tuj,l | ti, ju P Euq.
§ Readout: uG “ ψptui,L | i P V uq.

§ The functions ϕl and ψ are permutation invariant neural
networks (e.g. DeepSet or simple affine functions).

§ Quite large framework... but unfortunately not expressive
enough!

§ Incapable of counting triangles (see exercise).
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Group invariances and CNNs

Recap

ReLU networks
§ ReLU networks are exactly the continuous piecewise linear functions.

§ The number of regions can grow exponentially in the depth.

Group invariances

§ MLPs + translation invariance = CNNs.

§ Group invariance can often be imposed by restricting affine layers to be equivariant.

Next lesson
§ Approximation capabilities of MLPs.
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