
Deep Learning
Introduction, simple architectures (MLPs) and autodiff

Lessons: Kevin Scaman
TPs: Paul Lerner

ENSAE 2023-2024 1/39



Practical details

Practical details

Timeline
§ Dates: Every Friday afternoon from 09/02 to 22/03 (except 23/02)

§ Room: 2012 (lessons), 2014 (practicals)

§ Format: 4 lessons, 2 practicals

Validation
§ 1 homework. Due date: 22/03.

§ 1 final project. Due date: 29/03.

§ Final grade: pH ` P q{2

Communication
§ Email (kevin.scaman@inria.fr)

ENSAE 2023-2024 2/39

kevin.scaman@inria.fr


Practical details

Overview of the course

Lessons

1. Introduction, simple architectures (MLPs) and autodiff 09/02

2. Training pipeline, optimization and image analysis (CNNs) 16/02

3. Sequence regression (RNNs), stability and robustness 08/03

4. Generative models in vision and text (Transformers, GANs) 15/03

To go further

§ Dataflowr: Pytorch implementation. https://dataflowr.github.io/

§ The little book of DL: https://fleuret.org/public/lbdl.pdf

§ Deep Learning book: overview of Deep Learning. www.deeplearningbook.org/

§ Distill journal: Nice visualizations. https://distill.pub/

ENSAE 2023-2024 3/39

https://dataflowr.github.io/
https://fleuret.org/public/lbdl.pdf
www.deeplearningbook.org/
https://distill.pub/


Introduction and motivation

What is Deep Learning?

First, what are neural networks?
§ The notion changed over the last 8 decades...!

§ From early neural networks imitating real neurons...

§ To highly complex architectures with multiple sub-modules.

ENSAE 2023-2024 4/39



Introduction and motivation

What is Deep Learning?

First, what are neural networks?
§ The notion changed over the last 8 decades...!

§ From early neural networks imitating real neurons...

§ To highly complex architectures with multiple sub-modules.

ENSAE 2023-2024 4/39



Introduction and motivation

Timeline of Deep Learning

source: adapted from Mourtzis & Angelopoulos (2020)

ENSAE 2023-2024 5/39



Introduction and motivation

Recent deep learning applications

ENSAE 2023-2024 6/39



Introduction and motivation

Since 2021

Thousands of applications

§ Voice/audio/music generation: MusicGen, MusicLM, MusicLDM, Jukebox, HeyGen

§ Voice to text: Whisper

§ Image generation/deep-fakes: Dalle-3, MidJourney, Stable Diffusion XL

§ Text generation/chatbots: ChatGPT, GPT4, LLama, Claude, Mistral

§ Video generation: Make-a-video, HeyGen

§ Code generation/automatic app creation: Codex, Code LLama, phi-1.5, AutoGPT

§ Strategic games (Go, chess, Starcraft, diplomacy): AlphaZero, LeelaChess, Cicero

§ Autonomous driving

§ ...

ENSAE 2023-2024 7/39



Introduction and motivation

Most recent breakthroughs: image generation (Dalle3, SD, MJ, ...)

ENSAE 2023-2024 8/39



Introduction and motivation

Most recent breakthroughs: text generation (GPT4, LLama, Claude, ...)

source: OpenAI’s ChatGPT (https: // chat. openai. com/ )

ENSAE 2023-2024 9/39

https://chat.openai.com/


Introduction and motivation

What is Deep Learning? (usual setup)

ENSAE 2023-2024 10/39



Introduction and motivation

What is Deep Learning? (required skills)

What do you need to create a DL architecture?

1. Know how to encode/decode data
§ Data loader, data augmentation, data handling during training, mini-batch, ...
§ Encoding layers, one-hot, tokenization, embeddings, ...

2. Know how to create a neural network
§ Different types of layers, attention mechanism, batch normalization, ...
§ Multiple architectures: MLPs, RNNs, CNNs, GNNs, Transformers, ...

3. Know how to train the neural network
§ Optimization perspective, auto-diff, SGD, Adam, momentum, ...
§ Weight initialization, loss functions, scheduling, hyper-parameter optimization...

ENSAE 2023-2024 11/39



Introduction and motivation

What is Deep Learning? (required skills)

What do you need to create a DL architecture?

1. Know how to encode/decode data
§ Data loader, data augmentation, data handling during training, mini-batch, ...
§ Encoding layers, one-hot, tokenization, embeddings, ...

2. Know how to create a neural network
§ Different types of layers, attention mechanism, batch normalization, ...
§ Multiple architectures: MLPs, RNNs, CNNs, GNNs, Transformers, ...

3. Know how to train the neural network
§ Optimization perspective, auto-diff, SGD, Adam, momentum, ...
§ Weight initialization, loss functions, scheduling, hyper-parameter optimization...

ENSAE 2023-2024 11/39



Introduction and motivation

What is Deep Learning? (required skills)

What do you need to create a DL architecture?

1. Know how to encode/decode data
§ Data loader, data augmentation, data handling during training, mini-batch, ...
§ Encoding layers, one-hot, tokenization, embeddings, ...

2. Know how to create a neural network
§ Different types of layers, attention mechanism, batch normalization, ...
§ Multiple architectures: MLPs, RNNs, CNNs, GNNs, Transformers, ...

3. Know how to train the neural network
§ Optimization perspective, auto-diff, SGD, Adam, momentum, ...
§ Weight initialization, loss functions, scheduling, hyper-parameter optimization...

ENSAE 2023-2024 11/39



Introduction and motivation

What is Deep Learning? (twitter wisdom)

ENSAE 2023-2024 12/39



Introduction and motivation

What is Deep Learning? (twitter wisdom)

ENSAE 2023-2024 12/39



Introduction and motivation

Why Deep Learning Now?

§ Five decades of research in machine learning

§ CPUs/GPUs/storage developed for other purposes

§ lots of data from “the internet”

§ tools and culture of collaborative and reproducible science

§ resources and efforts from large corporations

ENSAE 2023-2024 13/39



Introduction and motivation

Why Deep Learning Now?

§ Five decades of research in machine learning

§ CPUs/GPUs/storage developed for other purposes

§ lots of data from “the internet”

§ tools and culture of collaborative and reproducible science

§ resources and efforts from large corporations

ENSAE 2023-2024 13/39



Introduction and motivation

Why Deep Learning Now?

§ Five decades of research in machine learning

§ CPUs/GPUs/storage developed for other purposes

§ lots of data from “the internet”

§ tools and culture of collaborative and reproducible science

§ resources and efforts from large corporations

ENSAE 2023-2024 13/39



Introduction and motivation

Why Deep Learning Now?

§ Five decades of research in machine learning

§ CPUs/GPUs/storage developed for other purposes

§ lots of data from “the internet”

§ tools and culture of collaborative and reproducible science

§ resources and efforts from large corporations

ENSAE 2023-2024 13/39



Introduction and motivation

Why Deep Learning Now?

§ Five decades of research in machine learning

§ CPUs/GPUs/storage developed for other purposes

§ lots of data from “the internet”

§ tools and culture of collaborative and reproducible science

§ resources and efforts from large corporations

ENSAE 2023-2024 13/39



Machine Learning pipeline

Machine Learning pipeline
A short recap

ENSAE 2023-2024 14/39



Machine Learning pipeline

Simple example: cats vs. dogs

Typical binary classification task. Objective is to distinguish cat images from dog images.

ENSAE 2023-2024 15/39



Machine Learning pipeline

Simple example: cats vs. dogs

Output class is represented as a 2d vector (p0, 1q for ”cat” and p1, 0q for ”dog”).

ENSAE 2023-2024 16/39



Machine Learning pipeline

Simple example: cats vs. dogs (linear model)

Image features (sift, wavelets,...) are extracted and given as input to the model.

ENSAE 2023-2024 17/39



Machine Learning pipeline

Simple example: cats vs. dogs (inference)

The model makes a prediction (”cat” or ”dog”) for a given image.

ENSAE 2023-2024 18/39



Machine Learning pipeline

Simple example: cats vs. dogs (training loop)

If the prediction is false, the model updates its parameters to improve its prediction.

ENSAE 2023-2024 19/39



Machine Learning pipeline

Simple example: cats vs. dogs (deep learning version)

In deep learning, we can train the whole pipeline using automatic differentiation.

ENSAE 2023-2024 20/39



Machine Learning pipeline

Typical Machine Learning setup

Data distribution

Let X ,Y be an input and output space and D a distribution over pX ,Yq. Then, we denote
our (test) input/output pair as

pX,Y q „ D

Risk minimization (a.k.a. supervized ML)

The objective of risk minimization is to find a minimizer θ‹ P Rp of the optimization problem

min
θPRp

E
`

ℓpgθpXq, Y q
˘

where ℓ : Y2 Ñ R` is a loss function and gθ : X Ñ Y a model parameterized by θ P Rp.

The target loss (e.g. accuracy) may be hard to train, and can thus be different from
the one used as objective during training!

ENSAE 2023-2024 21/39



Machine Learning pipeline

Typical Machine Learning setup

Data distribution

Let X ,Y be an input and output space and D a distribution over pX ,Yq. Then, we denote
our (test) input/output pair as

pX,Y q „ D

Risk minimization (a.k.a. supervized ML)

The objective of risk minimization is to find a minimizer θ‹ P Rp of the optimization problem

min
θPRp

E
`

ℓpgθpXq, Y q
˘

where ℓ : Y2 Ñ R` is a loss function and gθ : X Ñ Y a model parameterized by θ P Rp.

The target loss (e.g. accuracy) may be hard to train, and can thus be different from
the one used as objective during training!

ENSAE 2023-2024 21/39



Machine Learning pipeline

Typical Machine Learning setup

Data distribution

Let X ,Y be an input and output space and D a distribution over pX ,Yq. Then, we denote
our (test) input/output pair as

pX,Y q „ D

Risk minimization (a.k.a. supervized ML)

The objective of risk minimization is to find a minimizer θ‹ P Rp of the optimization problem

min
θPRp

E
`

ℓpgθpXq, Y q
˘

where ℓ : Y2 Ñ R` is a loss function and gθ : X Ñ Y a model parameterized by θ P Rp.

The target loss (e.g. accuracy) may be hard to train, and can thus be different from
the one used as objective during training!

ENSAE 2023-2024 21/39



Machine Learning pipeline

Typical Machine Learning setup (back to cats and dogs)

§ Input data: X P r0, 255swˆhˆ3 are images encoded as tensors (i.e. high-dim. matrices)

§ Output data: Y P R2 are classes, one-hot encoded (i.e. Yi “ 1 iff i is the true class).

§ Training data: Image-label pairs pxi, yiqiPJ1,nK (n number of data points).

§ Model: gθ : X ÞÑ xθ, fpXqy, where fpXq P RF are pre-computed features and θ P RF .

§ Loss function (test): ℓpy, y1q “ 1targmaxi y
1
i “ argmaxi yiu (accuracy)

§ Loss function (train): ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq
¯

(cross entropy)

ENSAE 2023-2024 22/39



Machine Learning pipeline

Typical Machine Learning setup (back to cats and dogs)

§ Input data: X P r0, 255swˆhˆ3 are images encoded as tensors (i.e. high-dim. matrices)

§ Output data: Y P R2 are classes, one-hot encoded (i.e. Yi “ 1 iff i is the true class).

§ Training data: Image-label pairs pxi, yiqiPJ1,nK (n number of data points).

§ Model: gθ : X ÞÑ xθ, fpXqy, where fpXq P RF are pre-computed features and θ P RF .

§ Loss function (test): ℓpy, y1q “ 1targmaxi y
1
i “ argmaxi yiu (accuracy)

§ Loss function (train): ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq
¯

(cross entropy)

ENSAE 2023-2024 22/39



Machine Learning pipeline

Typical Machine Learning setup (back to cats and dogs)

§ Input data: X P r0, 255swˆhˆ3 are images encoded as tensors (i.e. high-dim. matrices)

§ Output data: Y P R2 are classes, one-hot encoded (i.e. Yi “ 1 iff i is the true class).

§ Training data: Image-label pairs pxi, yiqiPJ1,nK (n number of data points).

§ Model: gθ : X ÞÑ xθ, fpXqy, where fpXq P RF are pre-computed features and θ P RF .

§ Loss function (test): ℓpy, y1q “ 1targmaxi y
1
i “ argmaxi yiu (accuracy)

§ Loss function (train): ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq
¯

(cross entropy)

ENSAE 2023-2024 22/39



Machine Learning pipeline

Typical Machine Learning setup (back to cats and dogs)

§ Input data: X P r0, 255swˆhˆ3 are images encoded as tensors (i.e. high-dim. matrices)

§ Output data: Y P R2 are classes, one-hot encoded (i.e. Yi “ 1 iff i is the true class).

§ Training data: Image-label pairs pxi, yiqiPJ1,nK (n number of data points).

§ Model: gθ : X ÞÑ xθ, fpXqy, where fpXq P RF are pre-computed features and θ P RF .

§ Loss function (test): ℓpy, y1q “ 1targmaxi y
1
i “ argmaxi yiu (accuracy)

§ Loss function (train): ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq
¯

(cross entropy)

ENSAE 2023-2024 22/39



Machine Learning pipeline

Typical Machine Learning setup (back to cats and dogs)

§ Input data: X P r0, 255swˆhˆ3 are images encoded as tensors (i.e. high-dim. matrices)

§ Output data: Y P R2 are classes, one-hot encoded (i.e. Yi “ 1 iff i is the true class).

§ Training data: Image-label pairs pxi, yiqiPJ1,nK (n number of data points).

§ Model: gθ : X ÞÑ xθ, fpXqy, where fpXq P RF are pre-computed features and θ P RF .

§ Loss function (test): ℓpy, y1q “ 1targmaxi y
1
i “ argmaxi yiu (accuracy)

§ Loss function (train): ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq
¯

(cross entropy)

ENSAE 2023-2024 22/39



Machine Learning pipeline

Typical Machine Learning setup (back to cats and dogs)

§ Input data: X P r0, 255swˆhˆ3 are images encoded as tensors (i.e. high-dim. matrices)

§ Output data: Y P R2 are classes, one-hot encoded (i.e. Yi “ 1 iff i is the true class).

§ Training data: Image-label pairs pxi, yiqiPJ1,nK (n number of data points).

§ Model: gθ : X ÞÑ xθ, fpXqy, where fpXq P RF are pre-computed features and θ P RF .

§ Loss function (test): ℓpy, y1q “ 1targmaxi y
1
i “ argmaxi yiu (accuracy)

§ Loss function (train): ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq
¯

(cross entropy)

ENSAE 2023-2024 22/39



Machine Learning pipeline

Training objective

Empirical risk minimization

Let pxi, yiqiPJ1,nK be a collection of n observations drawn independently according to D.

Then, the objective of empirical risk minimization (ERM) is to find a minimizer θ̂n P Rp of

min
θPRp

1

n

n
ÿ

i“1

ℓpgθpxiq, yiq

Optimization by gradient descent

We can minimize this loss by iterating

θt`1 “ θt ´ η∇L̂npθtq

where η ą 0 is a fixed step-size and L̂npθq “ 1
n

řn
i“1 ℓpgθpxiq, yiq is our objective.

ENSAE 2023-2024 23/39



Machine Learning pipeline

Training objective

Empirical risk minimization

Let pxi, yiqiPJ1,nK be a collection of n observations drawn independently according to D.

Then, the objective of empirical risk minimization (ERM) is to find a minimizer θ̂n P Rp of

min
θPRp

1

n

n
ÿ

i“1

ℓpgθpxiq, yiq

Optimization by gradient descent

We can minimize this loss by iterating

θt`1 “ θt ´ η∇L̂npθtq

where η ą 0 is a fixed step-size and L̂npθq “ 1
n

řn
i“1 ℓpgθpxiq, yiq is our objective.

ENSAE 2023-2024 23/39



Machine Learning pipeline

Typical loss functions

§ In its simplest form, the accuracy is ℓpy, y1q “ 1ty ‰ y1u.

§ For classification tasks, we usually use Y “ RC where C is the number of classes, and
§ ℓpy, y1q “ 1targmaxi y

1
i “ argmaxi yiu (top-1 accuracy) or,

§ ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq

¯

(cross entropy).

§ For regression tasks, we usually use Y “ Rd and
§ ℓpy, y1q “ }y ´ y1}22 “

ř

ipyi ´ y1
iq

2 (mean square error) or,
§ ℓpy, y1q “ }y ´ y1}1 “

ř

i |yi ´ y1
i| (mean absolute error).

ENSAE 2023-2024 24/39



Machine Learning pipeline

Typical loss functions

§ In its simplest form, the accuracy is ℓpy, y1q “ 1ty ‰ y1u.

§ For classification tasks, we usually use Y “ RC where C is the number of classes, and
§ ℓpy, y1q “ 1targmaxi y

1
i “ argmaxi yiu (top-1 accuracy) or,

§ ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq

¯

(cross entropy).

§ For regression tasks, we usually use Y “ Rd and
§ ℓpy, y1q “ }y ´ y1}22 “

ř

ipyi ´ y1
iq

2 (mean square error) or,
§ ℓpy, y1q “ }y ´ y1}1 “

ř

i |yi ´ y1
i| (mean absolute error).

ENSAE 2023-2024 24/39



Machine Learning pipeline

Typical loss functions

§ In its simplest form, the accuracy is ℓpy, y1q “ 1ty ‰ y1u.

§ For classification tasks, we usually use Y “ RC where C is the number of classes, and
§ ℓpy, y1q “ 1targmaxi y

1
i “ argmaxi yiu (top-1 accuracy) or,

§ ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq

¯

(cross entropy).

§ For regression tasks, we usually use Y “ Rd and
§ ℓpy, y1q “ }y ´ y1}22 “

ř

ipyi ´ y1
iq

2 (mean square error) or,
§ ℓpy, y1q “ }y ´ y1}1 “

ř

i |yi ´ y1
i| (mean absolute error).

ENSAE 2023-2024 24/39



Machine Learning pipeline

Recap

§ Learning is rephrased as minimizing a loss function over the training dataset.

§ Loss is typically cross entropy for classification and MSE for regression.

§ Training achieved by (stochastic) gradient descent (or its variants).

§ The whole pipeline is trained (i.e. its parameters are optimized) using autodiff.

ENSAE 2023-2024 25/39



Multi-Layer Perceptron

Multi-Layer Perceptron
Definition and Pytorch implementation

ENSAE 2023-2024 26/39



Multi-Layer Perceptron

Multi-Layer Perceptron (Rumelhart, Hinton, Williams, 75)

Details
§ Idea: Composition of affine (also called linear) and activation (simple non-linear
coordinate-wise) functions. Simple extension of linear models.

§ Activations: Coordinate-wise functions. (usually ReLU i.e. σpxqi “ maxt0, xiu).

§ Update rule: xpl`1q “ σpW plqxplq ` bplqq (except for the last layer!).

§ Brain analogy: A “neuron” is a coordinate of an activation layer.

ENSAE 2023-2024 27/39



Multi-Layer Perceptron

Structure of MLPs with ReLU activations

ReLU networks create affine regions

§ Case of two layers and dp2q “ 1: gθpxq “
ř

iw
p2q

i σpxw
p1q

i , xy ` biq ` c

§ Each ReLU activation can create a new affine region.

§ Example of affine regions of a ReLU network trained on MNIST:

(image credits: Hanin & Rolnik, 2019)

ENSAE 2023-2024 28/39



Multi-Layer Perceptron

Structure of MLPs with ReLU activations

ReLU networks create affine regions

§ Case of two layers and dp2q “ 1: gθpxq “
ř

iw
p2q

i σpxw
p1q

i , xy ` biq ` c

§ Each ReLU activation can create a new affine region.

§ Example of affine regions of a ReLU network trained on MNIST:

(image credits: Hanin & Rolnik, 2019)

ENSAE 2023-2024 28/39



Multi-Layer Perceptron

Structure of MLPs with ReLU activations

ReLU networks create affine regions

§ Case of two layers and dp2q “ 1: gθpxq “
ř

iw
p2q

i σpxw
p1q

i , xy ` biq ` c

§ Each ReLU activation can create a new affine region.

§ Example of affine regions of a ReLU network trained on MNIST:

(image credits: Hanin & Rolnik, 2019)

ENSAE 2023-2024 28/39



Multi-Layer Perceptron

Pytorch implementation

§ Simple implementation as a sequence of base operations

§ Affine layers in Pytorch:

layer = torch.nn.Linear(n in, n out)

§ ReLU activation layers in Pytorch:

layer = torch.nn.ReLU()

§ Each layer contains its parameters, that can be accessed with layer.parameters().

§ We can thus create an MLP with the code:

model = torch.nn.Sequential(torch.nn.Linear(n in, n internal),

torch.nn.ReLU(),

...,

torch.nn.Linear(n internal, n out))

ENSAE 2023-2024 29/39



Automatic differentiation

Automatic differentiation
Differentiating composite functions

ENSAE 2023-2024 30/39



Automatic differentiation

Existing approaches to compute gradients

§ Finite differences: small perturbations g1pxq «
gpx`εq´gpxq

ε . Leads to round-off errors.

§ Symbolic differentiation: keeps symbolic expressions at each step of the process.

§ Automatic differentiation: clever use of the chain rule.

Chain rule (simple version)

Let f, g : R Ñ R differentiable, then

pf ˝ gq1 “ pf 1 ˝ gq ¨ g1

ENSAE 2023-2024 31/39



Automatic differentiation

Existing approaches to compute gradients

§ Finite differences: small perturbations g1pxq «
gpx`εq´gpxq

ε . Leads to round-off errors.

§ Symbolic differentiation: keeps symbolic expressions at each step of the process.

§ Automatic differentiation: clever use of the chain rule.

Chain rule (simple version)

Let f, g : R Ñ R differentiable, then

pf ˝ gq1 “ pf 1 ˝ gq ¨ g1

ENSAE 2023-2024 31/39



Automatic differentiation

Existing approaches to compute gradients

§ Finite differences: small perturbations g1pxq «
gpx`εq´gpxq

ε . Leads to round-off errors.

§ Symbolic differentiation: keeps symbolic expressions at each step of the process.

§ Automatic differentiation: clever use of the chain rule.

Chain rule (simple version)

Let f, g : R Ñ R differentiable, then

pf ˝ gq1 “ pf 1 ˝ gq ¨ g1

ENSAE 2023-2024 31/39



Automatic differentiation

Existing approaches to compute gradients

§ Finite differences: small perturbations g1pxq «
gpx`εq´gpxq

ε . Leads to round-off errors.

§ Symbolic differentiation: keeps symbolic expressions at each step of the process.

§ Automatic differentiation: clever use of the chain rule.

Chain rule (simple version)

Let f, g : R Ñ R differentiable, then

pf ˝ gq1 “ pf 1 ˝ gq ¨ g1

ENSAE 2023-2024 31/39



Automatic differentiation

Recap: derivatives of multi-dimensional functions

Definition (Jacobian matrix)

Let f : Rn Ñ Rm a differentiable function. Its Jacobian Jf pxq P Rmˆn is the matrix whose
coordinates are the partial derivatives:

Jf pxq “

»

–

∇f1pxqJ

¨ ¨ ¨

∇fmpxqJ

fi

fl “

»

—

–

Bf1pxq

Bx1
¨ ¨ ¨

Bf1pxq

Bxn

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
Bfmpxq

Bx1
¨ ¨ ¨

Bfmpxq

Bxn

fi

ffi

fl

Chain rule (multi-dimensional version)

Let f : Rn Ñ Rm and g : Rp Ñ Rn differentiable, then

Jf˝g “ pJf ˝ gq ˆ Jg

ENSAE 2023-2024 32/39



Automatic differentiation

Recap: derivatives of multi-dimensional functions

Definition (Jacobian matrix)

Let f : Rn Ñ Rm a differentiable function. Its Jacobian Jf pxq P Rmˆn is the matrix whose
coordinates are the partial derivatives:

Jf pxq “

»

–

∇f1pxqJ

¨ ¨ ¨

∇fmpxqJ

fi

fl “

»

—

–

Bf1pxq

Bx1
¨ ¨ ¨

Bf1pxq

Bxn

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
Bfmpxq

Bx1
¨ ¨ ¨

Bfmpxq

Bxn

fi

ffi

fl

Chain rule (multi-dimensional version)

Let f : Rn Ñ Rm and g : Rp Ñ Rn differentiable, then

Jf˝g “ pJf ˝ gq ˆ Jg

ENSAE 2023-2024 32/39



Automatic differentiation

Derivative of a composition of functions

Composite function

§ Let f plq : Rdpl´1q

Ñ Rdplq
and gpxq “ gpLqpxq where

gplqpxq “ f plq ˝ ¨ ¨ ¨ ˝ f p2q ˝ f p1qpxq

§ Then, the Jacobian matrix (i.e. matrix of derivatives) of g is

Jgpxq “ Jf pLq

´

gpL´1qpxq

¯

ˆ ¨ ¨ ¨ ˆ Jf p2q

´

gp1qpxq

¯

ˆ Jf p1qpxq

§ What is the computational complexity to compute the Jacobian matrix?

ENSAE 2023-2024 33/39



Automatic differentiation

Derivative of a composition of functions

Composite function

§ Let f plq : Rdpl´1q

Ñ Rdplq
and gpxq “ gpLqpxq where

gplqpxq “ f plq ˝ ¨ ¨ ¨ ˝ f p2q ˝ f p1qpxq

§ Then, the Jacobian matrix (i.e. matrix of derivatives) of g is

Jgpxq “ Jf pLq

´

gpL´1qpxq

¯

ˆ ¨ ¨ ¨ ˆ Jf p2q

´

gp1qpxq

¯

ˆ Jf p1qpxq

§ What is the computational complexity to compute the Jacobian matrix?

ENSAE 2023-2024 33/39



Automatic differentiation

Derivative of a composition of functions

Composite function

§ Let f plq : Rdpl´1q

Ñ Rdplq
and gpxq “ gpLqpxq where

gplqpxq “ f plq ˝ ¨ ¨ ¨ ˝ f p2q ˝ f p1qpxq

§ Then, the Jacobian matrix (i.e. matrix of derivatives) of g is

Jgpxq “ Jf pLq

´

gpL´1qpxq

¯

ˆ ¨ ¨ ¨ ˆ Jf p2q

´

gp1qpxq

¯

ˆ Jf p1qpxq

§ What is the computational complexity to compute the Jacobian matrix?
ENSAE 2023-2024 33/39



Automatic differentiation

Computational complexity

Finite differences

§ The gradient of g can be approximated by finite differences: ∇gpxqi «
gpx`εeiq´gpxq

ε

§ Computational complexity: proportional to input dimension.

Matrix product

§ We have ∇gpxqJ “ JL ˆ ¨ ¨ ¨ ˆ J2 ˆ J1 where Jl “ Jf plq

`

gpl´1qpxq
˘

.

§ There are pL ´ 1q! ways to compute this product of L matrices.

§ Forward propagation: Compute ∇gpxqJ “ pJL ˆ pJL´1 ˆ ¨ ¨ ¨ ˆ pJ2 ˆ J1qqq. Requires
computation intensive matrix-matrix products.

§ Backward propagation: Compute ∇gpxqJ “ pppJL ˆ JL´1q ˆ ¨ ¨ ¨ ˆ J2q ˆ J1q. If
output is 1-dimensional, only needs matrix-vector products!

ENSAE 2023-2024 34/39



Automatic differentiation

Computational complexity

Finite differences

§ The gradient of g can be approximated by finite differences: ∇gpxqi «
gpx`εeiq´gpxq

ε

§ Computational complexity: proportional to input dimension.

Matrix product

§ We have ∇gpxqJ “ JL ˆ ¨ ¨ ¨ ˆ J2 ˆ J1 where Jl “ Jf plq

`

gpl´1qpxq
˘

.

§ There are pL ´ 1q! ways to compute this product of L matrices.

§ Forward propagation: Compute ∇gpxqJ “ pJL ˆ pJL´1 ˆ ¨ ¨ ¨ ˆ pJ2 ˆ J1qqq. Requires
computation intensive matrix-matrix products.

§ Backward propagation: Compute ∇gpxqJ “ pppJL ˆ JL´1q ˆ ¨ ¨ ¨ ˆ J2q ˆ J1q. If
output is 1-dimensional, only needs matrix-vector products!

ENSAE 2023-2024 34/39



Automatic differentiation

Computational complexity

Finite differences

§ The gradient of g can be approximated by finite differences: ∇gpxqi «
gpx`εeiq´gpxq

ε

§ Computational complexity: proportional to input dimension.

Matrix product

§ We have ∇gpxqJ “ JL ˆ ¨ ¨ ¨ ˆ J2 ˆ J1 where Jl “ Jf plq

`

gpl´1qpxq
˘

.

§ There are pL ´ 1q! ways to compute this product of L matrices.

§ Forward propagation: Compute ∇gpxqJ “ pJL ˆ pJL´1 ˆ ¨ ¨ ¨ ˆ pJ2 ˆ J1qqq. Requires
computation intensive matrix-matrix products.

§ Backward propagation: Compute ∇gpxqJ “ pppJL ˆ JL´1q ˆ ¨ ¨ ¨ ˆ J2q ˆ J1q. If
output is 1-dimensional, only needs matrix-vector products!

ENSAE 2023-2024 34/39



Automatic differentiation

Computational complexity

Finite differences

§ The gradient of g can be approximated by finite differences: ∇gpxqi «
gpx`εeiq´gpxq

ε

§ Computational complexity: proportional to input dimension.

Matrix product

§ We have ∇gpxqJ “ JL ˆ ¨ ¨ ¨ ˆ J2 ˆ J1 where Jl “ Jf plq

`

gpl´1qpxq
˘

.

§ There are pL ´ 1q! ways to compute this product of L matrices.

§ Forward propagation: Compute ∇gpxqJ “ pJL ˆ pJL´1 ˆ ¨ ¨ ¨ ˆ pJ2 ˆ J1qqq. Requires
computation intensive matrix-matrix products.

§ Backward propagation: Compute ∇gpxqJ “ pppJL ˆ JL´1q ˆ ¨ ¨ ¨ ˆ J2q ˆ J1q. If
output is 1-dimensional, only needs matrix-vector products!

ENSAE 2023-2024 34/39



Automatic differentiation

Computational complexity

Finite differences

§ The gradient of g can be approximated by finite differences: ∇gpxqi «
gpx`εeiq´gpxq

ε

§ Computational complexity: proportional to input dimension.

Matrix product

§ We have ∇gpxqJ “ JL ˆ ¨ ¨ ¨ ˆ J2 ˆ J1 where Jl “ Jf plq

`

gpl´1qpxq
˘

.

§ There are pL ´ 1q! ways to compute this product of L matrices.

§ Forward propagation: Compute ∇gpxqJ “ pJL ˆ pJL´1 ˆ ¨ ¨ ¨ ˆ pJ2 ˆ J1qqq. Requires
computation intensive matrix-matrix products.

§ Backward propagation: Compute ∇gpxqJ “ pppJL ˆ JL´1q ˆ ¨ ¨ ¨ ˆ J2q ˆ J1q. If
output is 1-dimensional, only needs matrix-vector products!

ENSAE 2023-2024 34/39



Automatic differentiation

Which algorithm is faster?

Complexity for gradients of MLPs

§ Let gθ : Rd Ñ R an MLP of width w ě d and depth L ě 1.

§ Function value:

Opw2Lq operations.

§ Finite differences:

Opdw2Lq operations.

§ Forward propagation:

Opdw2Lq operations.

§ Backward propagation:

Opw2Lq operations.

Intuition for gradients w.r.t. parameters

§ Finite differences requires two function calls per parameter.

§ Backprop requires O(1) function calls for the whole gradient.

§ Interpretation as parameter testing:
§ Each partial derivative w.r.t. a parameter indicates if this parameter can describe the data.
§ With backprop, we can test all parameters at once.

ENSAE 2023-2024 35/39



Automatic differentiation

Which algorithm is faster?

Complexity for gradients of MLPs

§ Let gθ : Rd Ñ R an MLP of width w ě d and depth L ě 1.

§ Function value: Opw2Lq operations.

§ Finite differences:

Opdw2Lq operations.

§ Forward propagation:

Opdw2Lq operations.

§ Backward propagation:

Opw2Lq operations.

Intuition for gradients w.r.t. parameters

§ Finite differences requires two function calls per parameter.

§ Backprop requires O(1) function calls for the whole gradient.
§ Interpretation as parameter testing:

§ Each partial derivative w.r.t. a parameter indicates if this parameter can describe the data.
§ With backprop, we can test all parameters at once.

ENSAE 2023-2024 35/39



Automatic differentiation

Which algorithm is faster?

Complexity for gradients of MLPs

§ Let gθ : Rd Ñ R an MLP of width w ě d and depth L ě 1.

§ Function value: Opw2Lq operations.

§ Finite differences: Opdw2Lq operations.

§ Forward propagation:

Opdw2Lq operations.

§ Backward propagation:

Opw2Lq operations.

Intuition for gradients w.r.t. parameters

§ Finite differences requires two function calls per parameter.

§ Backprop requires O(1) function calls for the whole gradient.
§ Interpretation as parameter testing:

§ Each partial derivative w.r.t. a parameter indicates if this parameter can describe the data.
§ With backprop, we can test all parameters at once.

ENSAE 2023-2024 35/39



Automatic differentiation

Which algorithm is faster?

Complexity for gradients of MLPs

§ Let gθ : Rd Ñ R an MLP of width w ě d and depth L ě 1.

§ Function value: Opw2Lq operations.

§ Finite differences: Opdw2Lq operations.

§ Forward propagation: Opdw2Lq operations.

§ Backward propagation:

Opw2Lq operations.

Intuition for gradients w.r.t. parameters

§ Finite differences requires two function calls per parameter.

§ Backprop requires O(1) function calls for the whole gradient.
§ Interpretation as parameter testing:

§ Each partial derivative w.r.t. a parameter indicates if this parameter can describe the data.
§ With backprop, we can test all parameters at once.

ENSAE 2023-2024 35/39



Automatic differentiation

Which algorithm is faster?

Complexity for gradients of MLPs

§ Let gθ : Rd Ñ R an MLP of width w ě d and depth L ě 1.

§ Function value: Opw2Lq operations.

§ Finite differences: Opdw2Lq operations.

§ Forward propagation: Opdw2Lq operations.

§ Backward propagation: Opw2Lq operations.

Intuition for gradients w.r.t. parameters

§ Finite differences requires two function calls per parameter.

§ Backprop requires O(1) function calls for the whole gradient.
§ Interpretation as parameter testing:

§ Each partial derivative w.r.t. a parameter indicates if this parameter can describe the data.
§ With backprop, we can test all parameters at once.

ENSAE 2023-2024 35/39



Automatic differentiation

Which algorithm is faster?

Complexity for gradients of MLPs

§ Let gθ : Rd Ñ R an MLP of width w ě d and depth L ě 1.

§ Function value: Opw2Lq operations.

§ Finite differences: Opdw2Lq operations.

§ Forward propagation: Opdw2Lq operations.

§ Backward propagation: Opw2Lq operations.

Intuition for gradients w.r.t. parameters

§ Finite differences requires two function calls per parameter.

§ Backprop requires O(1) function calls for the whole gradient.
§ Interpretation as parameter testing:

§ Each partial derivative w.r.t. a parameter indicates if this parameter can describe the data.
§ With backprop, we can test all parameters at once.

ENSAE 2023-2024 35/39



Automatic differentiation

Computation graphs: intuition

ENSAE 2023-2024 36/39



Automatic differentiation

Computation graphs: intuition

ENSAE 2023-2024 36/39



Automatic differentiation

Computation graphs: intuition

ENSAE 2023-2024 36/39



Automatic differentiation

Computation graphs: formal definition

Definition (computation graph)

§ Let G “ pV,Eq be a directed acyclic graph (DAG) encoding a function L : Rd Ñ R.

§ Parameters: For any root r P R, let xprq “ θprq be an input or parameter.

§ Layers: For any other node v P V {R, let xpvq “ f pvq
`

pxpwqqwPParentspvq

˘

.

§ Output: The output of the leaf node xpfq “ Lpθq P R where θ “ pθprqqrPR.

Properties

§ Essentially all programmable functions can be decomposed this way.

§ Chain rule: partial gradient Bxpfq

Bxpvq for a node v P V from that of its children.

Bxpfq

Bxpvq
“

ÿ

wPChildrenpvq

Bf pwq
´

pxpw1qqw1PParentspwq

¯

Bxpvq

J

Bxpfq

Bxpwq

ENSAE 2023-2024 37/39



Automatic differentiation

Computation graphs: formal definition

Definition (computation graph)

§ Let G “ pV,Eq be a directed acyclic graph (DAG) encoding a function L : Rd Ñ R.
§ Parameters: For any root r P R, let xprq “ θprq be an input or parameter.

§ Layers: For any other node v P V {R, let xpvq “ f pvq
`

pxpwqqwPParentspvq

˘

.

§ Output: The output of the leaf node xpfq “ Lpθq P R where θ “ pθprqqrPR.

Properties

§ Essentially all programmable functions can be decomposed this way.

§ Chain rule: partial gradient Bxpfq

Bxpvq for a node v P V from that of its children.

Bxpfq

Bxpvq
“

ÿ

wPChildrenpvq

Bf pwq
´

pxpw1qqw1PParentspwq

¯

Bxpvq

J

Bxpfq

Bxpwq

ENSAE 2023-2024 37/39



Automatic differentiation

Computation graphs: formal definition

Definition (computation graph)

§ Let G “ pV,Eq be a directed acyclic graph (DAG) encoding a function L : Rd Ñ R.
§ Parameters: For any root r P R, let xprq “ θprq be an input or parameter.

§ Layers: For any other node v P V {R, let xpvq “ f pvq
`

pxpwqqwPParentspvq

˘

.

§ Output: The output of the leaf node xpfq “ Lpθq P R where θ “ pθprqqrPR.

Properties

§ Essentially all programmable functions can be decomposed this way.

§ Chain rule: partial gradient Bxpfq

Bxpvq for a node v P V from that of its children.

Bxpfq

Bxpvq
“

ÿ

wPChildrenpvq

Bf pwq
´

pxpw1qqw1PParentspwq

¯

Bxpvq

J

Bxpfq

Bxpwq

ENSAE 2023-2024 37/39



Automatic differentiation

Computation graphs: formal definition

Definition (computation graph)

§ Let G “ pV,Eq be a directed acyclic graph (DAG) encoding a function L : Rd Ñ R.
§ Parameters: For any root r P R, let xprq “ θprq be an input or parameter.

§ Layers: For any other node v P V {R, let xpvq “ f pvq
`

pxpwqqwPParentspvq

˘

.

§ Output: The output of the leaf node xpfq “ Lpθq P R where θ “ pθprqqrPR.

Properties

§ Essentially all programmable functions can be decomposed this way.

§ Chain rule: partial gradient Bxpfq

Bxpvq for a node v P V from that of its children.

Bxpfq

Bxpvq
“

ÿ

wPChildrenpvq

Bf pwq
´

pxpw1qqw1PParentspwq

¯

Bxpvq

J

Bxpfq

Bxpwq

ENSAE 2023-2024 37/39



Automatic differentiation

Computation graphs: formal definition

Definition (computation graph)

§ Let G “ pV,Eq be a directed acyclic graph (DAG) encoding a function L : Rd Ñ R.
§ Parameters: For any root r P R, let xprq “ θprq be an input or parameter.

§ Layers: For any other node v P V {R, let xpvq “ f pvq
`

pxpwqqwPParentspvq

˘

.

§ Output: The output of the leaf node xpfq “ Lpθq P R where θ “ pθprqqrPR.

Properties

§ Essentially all programmable functions can be decomposed this way.

§ Chain rule: partial gradient Bxpfq

Bxpvq for a node v P V from that of its children.

Bxpfq

Bxpvq
“

ÿ

wPChildrenpvq

Bf pwq
´

pxpw1qqw1PParentspwq

¯

Bxpvq

J

Bxpfq

Bxpwq

ENSAE 2023-2024 37/39



Automatic differentiation

Computation graphs: formal definition

Definition (computation graph)

§ Let G “ pV,Eq be a directed acyclic graph (DAG) encoding a function L : Rd Ñ R.
§ Parameters: For any root r P R, let xprq “ θprq be an input or parameter.

§ Layers: For any other node v P V {R, let xpvq “ f pvq
`

pxpwqqwPParentspvq

˘

.

§ Output: The output of the leaf node xpfq “ Lpθq P R where θ “ pθprqqrPR.

Properties

§ Essentially all programmable functions can be decomposed this way.

§ Chain rule: partial gradient Bxpfq

Bxpvq for a node v P V from that of its children.

Bxpfq

Bxpvq
“

ÿ

wPChildrenpvq

Bf pwq
´

pxpw1qqw1PParentspwq

¯

Bxpvq

J

Bxpfq

Bxpwq

ENSAE 2023-2024 37/39



Automatic differentiation

The backpropagation algorithm (Rumelhart et al., 1986)

§ Composed of 2 steps: a forward pass (FP) and a backward pass (BP).

§ FP: For all r P R, let yprq “ xr the inputs (or parameters), and, for all v P V {R, we
compute iteratively from roots to leaf,

ypvq “ f pvq
´

pypwqqwPParentspvq

¯

§ BP: Let zpfq “ 1 and, for v P V {F , we compute iteratively from leaf to roots,

zpvq “
ÿ

wPChildrenpvq

Bf pwq
´

pypw1qqw1PParentspwq

¯

Bxpvq

J

zpwq

§ Then, for all r P R, we have BLpθq

Bθprq “ zprq.

ENSAE 2023-2024 38/39



Automatic differentiation

The backpropagation algorithm (Rumelhart et al., 1986)

§ Composed of 2 steps: a forward pass (FP) and a backward pass (BP).

§ FP: For all r P R, let yprq “ xr the inputs (or parameters), and, for all v P V {R, we
compute iteratively from roots to leaf,

ypvq “ f pvq
´

pypwqqwPParentspvq

¯

§ BP: Let zpfq “ 1 and, for v P V {F , we compute iteratively from leaf to roots,

zpvq “
ÿ

wPChildrenpvq

Bf pwq
´

pypw1qqw1PParentspwq

¯

Bxpvq

J

zpwq

§ Then, for all r P R, we have BLpθq

Bθprq “ zprq.

ENSAE 2023-2024 38/39



Automatic differentiation

The backpropagation algorithm (Rumelhart et al., 1986)

§ Composed of 2 steps: a forward pass (FP) and a backward pass (BP).

§ FP: For all r P R, let yprq “ xr the inputs (or parameters), and, for all v P V {R, we
compute iteratively from roots to leaf,

ypvq “ f pvq
´

pypwqqwPParentspvq

¯

§ BP: Let zpfq “ 1 and, for v P V {F , we compute iteratively from leaf to roots,

zpvq “
ÿ

wPChildrenpvq

Bf pwq
´

pypw1qqw1PParentspwq

¯

Bxpvq

J

zpwq

§ Then, for all r P R, we have BLpθq

Bθprq “ zprq.

ENSAE 2023-2024 38/39



Automatic differentiation

Class overview

Lessons

1. Introduction, simple architectures (MLPs) and autodiff 09/02

2. Training pipeline, optimization and image analysis (CNNs) 16/02

3. Sequence regression (RNNs), stability and robustness 08/03

4. Generative models in vision and text (Transformers, GANs) 15/03

Practicals
§ TP1: MLPs and CNNs in Pytorch 01/03

§ TP2: RNNs and generative models 22/03

ENSAE 2023-2024 39/39


	Practical details
	

	Introduction and motivation
	

	Machine Learning pipeline
	

	Multi-Layer Perceptron
	

	Automatic differentiation
	


