
Deep Learning
Training pipeline, optimization and image analysis (CNNs)

Lessons: Kevin Scaman
TPs: Paul Lerner

ENSAE 2023-2024 1/54

Practical details

Class overview

Lessons

1. Introduction, simple architectures (MLPs) and autodiff 09/02

2. Training pipeline, optimization and image analysis (CNNs) 16/02

3. Sequence regression (RNNs), stability and robustness 08/03

4. Generative models in vision and text (Transformers, GANs) 15/03

Practicals
§ TP1: MLPs and CNNs in Pytorch 01/03

§ TP2: RNNs and generative models 22/03

ENSAE 2023-2024 2/54

Practical details

Projects

Overview
§ Teams of up to 4 students

§ DL task with Pytorch implementation

§ You can chose your topics from:
https://kscaman.github.io/teaching/2023_ENSAE_DL.html

§ Can also propose one, but better to start with an existing library

Deadlines
§ (01/03) Team formation and topics: Send email (kevin.scaman@inria.fr) with
team and topic (link to repo + short description)

§ (29/03) Deliverables: Report (pdf) + code (link to a colab/git repo)

ENSAE 2023-2024 3/54

https://kscaman.github.io/teaching/2023_ENSAE_DL.html
kevin.scaman@inria.fr

Practical details

Projects

Overview
§ Teams of up to 4 students

§ DL task with Pytorch implementation

§ You can chose your topics from:
https://kscaman.github.io/teaching/2023_ENSAE_DL.html

§ Can also propose one, but better to start with an existing library

Deadlines
§ (01/03) Team formation and topics: Send email (kevin.scaman@inria.fr) with
team and topic (link to repo + short description)

§ (29/03) Deliverables: Report (pdf) + code (link to a colab/git repo)

ENSAE 2023-2024 3/54

https://kscaman.github.io/teaching/2023_ENSAE_DL.html
kevin.scaman@inria.fr

Practical details

Projects

Guidelines and tips

§ Usually better to start with an existing library.

§ Re-obtaining the results and implementing one alternative method / adaptation to
another setting / use on an application is sufficient.

§ Usually, the first try doesn’t work... Investigate why!

§ We’re not looking for SOTA performance... hard work is more valued. :)

§ Don’t start too late... debugging takes time.

ENSAE 2023-2024 4/54

Tensors

Pytorch tensors
The building blocks of DL implementations

ENSAE 2023-2024 5/54

Tensors

Pytorch tensors

§ A tensor is a d´dimensional array in Pytorch.
§ Can store real values, vectors, matrices...
§ Made to mimic Numpy arrays.

ENSAE 2023-2024 6/54

Tensors

Some remarks on tensors (1)

1. Tensor creation:
§ We can create a tensor with ”x = torch.Tensor([[1,0,2],[3,2,3]])”.
§ We can clone a tensor with ”x.clone()”.
§ Tensors have a data type, e.g. ”x = torch.Tensor(..., dtype=torch.int64)”.

2. Coordinate-wise operations: ”x * y” (needs matching sizes), ”torch.exp(x)”,
”x**2”,...

3. Matrix multiplication: ”x @ y”.

4. Reshaping: ”x.view(1,3,-1)” or ”x.unsqueeze(0)” to add a dimension of size 1.

5. Other operations: See doc ,. ”torch.sum(x)”, ”torch.mean(x)”...

ENSAE 2023-2024 7/54

Tensors

Some remarks on tensors (1)

1. Tensor creation:
§ We can create a tensor with ”x = torch.Tensor([[1,0,2],[3,2,3]])”.
§ We can clone a tensor with ”x.clone()”.
§ Tensors have a data type, e.g. ”x = torch.Tensor(..., dtype=torch.int64)”.

2. Coordinate-wise operations: ”x * y” (needs matching sizes), ”torch.exp(x)”,
”x**2”,...

3. Matrix multiplication: ”x @ y”.

4. Reshaping: ”x.view(1,3,-1)” or ”x.unsqueeze(0)” to add a dimension of size 1.

5. Other operations: See doc ,. ”torch.sum(x)”, ”torch.mean(x)”...

ENSAE 2023-2024 7/54

Tensors

Some remarks on tensors (1)

1. Tensor creation:
§ We can create a tensor with ”x = torch.Tensor([[1,0,2],[3,2,3]])”.
§ We can clone a tensor with ”x.clone()”.
§ Tensors have a data type, e.g. ”x = torch.Tensor(..., dtype=torch.int64)”.

2. Coordinate-wise operations: ”x * y” (needs matching sizes), ”torch.exp(x)”,
”x**2”,...

3. Matrix multiplication: ”x @ y”.

4. Reshaping: ”x.view(1,3,-1)” or ”x.unsqueeze(0)” to add a dimension of size 1.

5. Other operations: See doc ,. ”torch.sum(x)”, ”torch.mean(x)”...

ENSAE 2023-2024 7/54

Tensors

Some remarks on tensors (1)

1. Tensor creation:
§ We can create a tensor with ”x = torch.Tensor([[1,0,2],[3,2,3]])”.
§ We can clone a tensor with ”x.clone()”.
§ Tensors have a data type, e.g. ”x = torch.Tensor(..., dtype=torch.int64)”.

2. Coordinate-wise operations: ”x * y” (needs matching sizes), ”torch.exp(x)”,
”x**2”,...

3. Matrix multiplication: ”x @ y”.

4. Reshaping: ”x.view(1,3,-1)” or ”x.unsqueeze(0)” to add a dimension of size 1.

5. Other operations: See doc ,. ”torch.sum(x)”, ”torch.mean(x)”...

ENSAE 2023-2024 7/54

Tensors

Some remarks on tensors (1)

1. Tensor creation:
§ We can create a tensor with ”x = torch.Tensor([[1,0,2],[3,2,3]])”.
§ We can clone a tensor with ”x.clone()”.
§ Tensors have a data type, e.g. ”x = torch.Tensor(..., dtype=torch.int64)”.

2. Coordinate-wise operations: ”x * y” (needs matching sizes), ”torch.exp(x)”,
”x**2”,...

3. Matrix multiplication: ”x @ y”.

4. Reshaping: ”x.view(1,3,-1)” or ”x.unsqueeze(0)” to add a dimension of size 1.

5. Other operations: See doc ,. ”torch.sum(x)”, ”torch.mean(x)”...

ENSAE 2023-2024 7/54

Tensors

Some remarks on tensors (2)

1. The first dimension is usually the samples (”x.shape[0]” is the batch size)

2. Gradients:
§ Tensors can have a gradient in ”x.grad”.
§ We can remove (and clone) this tensor from the computation graph by using ”y =

x.detach()”.

3. To NumPy: ”x.numpy()” or ”x.detach().numpy()”.

4. Debug:
§ Many errors can be unnoticed due to wrong tensor sizes and Python’s dynamic typing...
§ Always verify your intermediate computations with e.g. ”print(x[:5])”.
§ Always verify your tensor shapes with ”print(x.shape)”!

A tensor of shape (5,1) is not the same a tensor of shape (5)!

ENSAE 2023-2024 8/54

Tensors

Some remarks on tensors (2)

1. The first dimension is usually the samples (”x.shape[0]” is the batch size)

2. Gradients:
§ Tensors can have a gradient in ”x.grad”.
§ We can remove (and clone) this tensor from the computation graph by using ”y =

x.detach()”.

3. To NumPy: ”x.numpy()” or ”x.detach().numpy()”.

4. Debug:
§ Many errors can be unnoticed due to wrong tensor sizes and Python’s dynamic typing...
§ Always verify your intermediate computations with e.g. ”print(x[:5])”.
§ Always verify your tensor shapes with ”print(x.shape)”!

A tensor of shape (5,1) is not the same a tensor of shape (5)!

ENSAE 2023-2024 8/54

Tensors

Some remarks on tensors (2)

1. The first dimension is usually the samples (”x.shape[0]” is the batch size)

2. Gradients:
§ Tensors can have a gradient in ”x.grad”.
§ We can remove (and clone) this tensor from the computation graph by using ”y =

x.detach()”.

3. To NumPy: ”x.numpy()” or ”x.detach().numpy()”.

4. Debug:
§ Many errors can be unnoticed due to wrong tensor sizes and Python’s dynamic typing...
§ Always verify your intermediate computations with e.g. ”print(x[:5])”.
§ Always verify your tensor shapes with ”print(x.shape)”!

A tensor of shape (5,1) is not the same a tensor of shape (5)!

ENSAE 2023-2024 8/54

Tensors

Some remarks on tensors (2)

1. The first dimension is usually the samples (”x.shape[0]” is the batch size)

2. Gradients:
§ Tensors can have a gradient in ”x.grad”.
§ We can remove (and clone) this tensor from the computation graph by using ”y =

x.detach()”.

3. To NumPy: ”x.numpy()” or ”x.detach().numpy()”.

4. Debug:
§ Many errors can be unnoticed due to wrong tensor sizes and Python’s dynamic typing...
§ Always verify your intermediate computations with e.g. ”print(x[:5])”.
§ Always verify your tensor shapes with ”print(x.shape)”!

A tensor of shape (5,1) is not the same a tensor of shape (5)!

ENSAE 2023-2024 8/54

Tensors

Some remarks on tensors (2)

1. The first dimension is usually the samples (”x.shape[0]” is the batch size)

2. Gradients:
§ Tensors can have a gradient in ”x.grad”.
§ We can remove (and clone) this tensor from the computation graph by using ”y =

x.detach()”.

3. To NumPy: ”x.numpy()” or ”x.detach().numpy()”.

4. Debug:
§ Many errors can be unnoticed due to wrong tensor sizes and Python’s dynamic typing...
§ Always verify your intermediate computations with e.g. ”print(x[:5])”.
§ Always verify your tensor shapes with ”print(x.shape)”!

A tensor of shape (5,1) is not the same a tensor of shape (5)!

ENSAE 2023-2024 8/54

DL training pipeline

Deep learning training pipeline
Training and testing neural networks (in Pytorch)

ENSAE 2023-2024 9/54

DL training pipeline

Back to cats and dogs

Typical binary classification task. Objective is to distinguish cat images from dog images.

ENSAE 2023-2024 10/54

DL training pipeline

Pytorch training pipeline

Data loader Ñ model creation Ñ loss function Ñ optimization loop

ENSAE 2023-2024 11/54

DL training pipeline

Dataloading

Dataset class

torch.utils.data.Dataset is an abstract class representing a dataset. Your custom
dataset should inherit Dataset and override the following methods:

§ __len__ so that len(dataset) returns the size of the dataset.

§ __getitem__ to support the indexing such that dataset[i] gives the ith sample.

Iterating through the dataset with Dataloader

By using a simple for loop to iterate over the data, we are missing out on:

§ Batching the data,

§ Shuffling the data,

§ Load the data in parallel using multiprocessing workers.

torch.utils.data.DataLoader is an iterator which provides all these features.

ENSAE 2023-2024 12/54

DL training pipeline

Dataloading (advanced)

Transformations
§ torchvision.transforms allows to easily compose data transformations to the data.

§ img_transform = transforms.Compose([transforms.CenterCrop(224),

transforms.ToTensor(),

transforms.Normalize(mean, std)])

§ On most vision dataset, the transform field is applied before accessing the data.

Dataloader
§ To create a dataloader for the training set, use torch.utils.data.DataLoader:

loader = DataLoader(dataset, batch_size=64, shuffle=True, num_workers=6)

§ Includes a random mini-batch selection mechanism and parallelization.

§ Used as an iterator: for inputs, targets in train loader: ...

ENSAE 2023-2024 13/54

DL training pipeline

Dataloading (advanced)

Transformations
§ torchvision.transforms allows to easily compose data transformations to the data.

§ img_transform = transforms.Compose([transforms.CenterCrop(224),

transforms.ToTensor(),

transforms.Normalize(mean, std)])

§ On most vision dataset, the transform field is applied before accessing the data.

Dataloader
§ To create a dataloader for the training set, use torch.utils.data.DataLoader:

loader = DataLoader(dataset, batch_size=64, shuffle=True, num_workers=6)

§ Includes a random mini-batch selection mechanism and parallelization.

§ Used as an iterator: for inputs, targets in train loader: ...

ENSAE 2023-2024 13/54

DL training pipeline

Model creation

Sequential neural networks and MLPs

§ One liner for MLPs: model = nn.Sequential(nn.Linear(2,4), nn.ReLU(),...)

§ More generally any sequence of already existing layers.

§ How to create new layers or entirely new architectures?

The Module class
§ All models are exentions of the nn.Module class.

§ Need to implement a model.forward(x) function.

§ Can be called as a function model(x).

ENSAE 2023-2024 14/54

DL training pipeline

Neural networks in Pytorch

The Module class
§ All models are exentions of the nn.Module class.

§ Need to implement a model.forward(x) function.

§ Can be called as a function model(x).

Example (function of two variables)

class YourModel(nn.Module):

def __init__(self):

super().__init__()

self.lin = nn.Linear(10, 100)

def forward(self, x, y)

x = self.lin(x)

return y + torch.exp(torch.mean(x, dim=1))

ENSAE 2023-2024 15/54

DL training pipeline

Neural networks in Pytorch

The Module class
§ All models are exentions of the nn.Module class.

§ Need to implement a model.forward(x) function.

§ Can be called as a function model(x).

Example (function of two variables)

class YourModel(nn.Module):

def __init__(self):

super().__init__()

self.lin = nn.Linear(10, 100)

def forward(self, x, y)

x = self.lin(x)

return y + torch.exp(torch.mean(x, dim=1))
ENSAE 2023-2024 15/54

DL training pipeline

Neural networks in Pytorch (2)

§ A function backward is automatically implemented to perform backpropagation.

§ By default, the parameters model.parameters() are randomly initialized.

§ Hierarchical structure: All layers also extend nn.Module, and any module can be used
in another module. All modules used by a model are accessible via model.children().

ENSAE 2023-2024 16/54

DL training pipeline

Neural networks in Pytorch (2)

§ A function backward is automatically implemented to perform backpropagation.

§ By default, the parameters model.parameters() are randomly initialized.

§ Hierarchical structure: All layers also extend nn.Module, and any module can be used
in another module. All modules used by a model are accessible via model.children().

ENSAE 2023-2024 16/54

DL training pipeline

Neural networks in Pytorch (2)

§ A function backward is automatically implemented to perform backpropagation.

§ By default, the parameters model.parameters() are randomly initialized.

§ Hierarchical structure: All layers also extend nn.Module, and any module can be used
in another module. All modules used by a model are accessible via model.children().

ENSAE 2023-2024 16/54

DL training pipeline

Loss functions (recap)

Empirical risk minimization

Let pxi, yiqiPJ1,nK be a collection of n observations drawn independently according to D.

Then, the objective of empirical risk minimization (ERM) is to find a minimizer θ̂n P Rp of

min
θPRp

1

n

n
ÿ

i“1

ℓpgθpxiq, yiq

Losses used for training

§ Regression: Mean sqaure error (MSE) ℓpy, y1q “ }y ´ y1}22 “
ř

ipyi ´ y1
iq
2

§ Classification: Cross entropy (CE) ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq
¯

ENSAE 2023-2024 17/54

DL training pipeline

Loss functions (recap)

Empirical risk minimization

Let pxi, yiqiPJ1,nK be a collection of n observations drawn independently according to D.

Then, the objective of empirical risk minimization (ERM) is to find a minimizer θ̂n P Rp of

min
θPRp

1

n

n
ÿ

i“1

ℓpgθpxiq, yiq

Losses used for training

§ Regression: Mean sqaure error (MSE) ℓpy, y1q “ }y ´ y1}22 “
ř

ipyi ´ y1
iq
2

§ Classification: Cross entropy (CE) ℓpy, y1q “ ´
ř

i y
1
i ln

´

exppyiq{
ř

j exppyjq
¯

ENSAE 2023-2024 17/54

DL training pipeline

Cross entropy

§ Intuition: The model outputs a score for each class yi “ gθpxq. We create a probability

on the classes pi “
exppyiq

ř

j exppyjq
. We then take the negative logarithm of the true class’s

probability ℓpy, y1q “ ´ log ppkq, where k P J1, CK s.t. y1
i “ 1ti “ ku.

§ Interpretation #1: Minimizing cross entropy is equivalent to maximum likelihood
estimation for the probabilistic model of the data samples pXi, Yiq such that
logPpYi “ k | Xiq 9 gθpXiqk where Xi are i.i.d. and independent of θ, as

PθppXi, Yiqq “
ź

i

PpXiqPθpYi | Xiq 9
ź

i

exppgθpXiqYiq
ř

k exppgθpXiqkq

§ Interpretation #2: Difference between the scores of the predicted and true classes.

ℓpy, y1q “ log

˜

ÿ

i

exppyiq

¸

´ yk « max
i

yi ´ yk

ENSAE 2023-2024 18/54

DL training pipeline

Cross entropy

§ Intuition: The model outputs a score for each class yi “ gθpxq. We create a probability

on the classes pi “
exppyiq

ř

j exppyjq
. We then take the negative logarithm of the true class’s

probability ℓpy, y1q “ ´ log ppkq, where k P J1, CK s.t. y1
i “ 1ti “ ku.

§ Interpretation #1: Minimizing cross entropy is equivalent to maximum likelihood
estimation for the probabilistic model of the data samples pXi, Yiq such that
logPpYi “ k | Xiq 9 gθpXiqk where Xi are i.i.d. and independent of θ, as

PθppXi, Yiqq “
ź

i

PpXiqPθpYi | Xiq 9
ź

i

exppgθpXiqYiq
ř

k exppgθpXiqkq

§ Interpretation #2: Difference between the scores of the predicted and true classes.

ℓpy, y1q “ log

˜

ÿ

i

exppyiq

¸

´ yk « max
i

yi ´ yk

ENSAE 2023-2024 18/54

DL training pipeline

Cross entropy

§ Intuition: The model outputs a score for each class yi “ gθpxq. We create a probability

on the classes pi “
exppyiq

ř

j exppyjq
. We then take the negative logarithm of the true class’s

probability ℓpy, y1q “ ´ log ppkq, where k P J1, CK s.t. y1
i “ 1ti “ ku.

§ Interpretation #1: Minimizing cross entropy is equivalent to maximum likelihood
estimation for the probabilistic model of the data samples pXi, Yiq such that
logPpYi “ k | Xiq 9 gθpXiqk where Xi are i.i.d. and independent of θ, as

PθppXi, Yiqq “
ź

i

PpXiqPθpYi | Xiq 9
ź

i

exppgθpXiqYiq
ř

k exppgθpXiqkq

§ Interpretation #2: Difference between the scores of the predicted and true classes.

ℓpy, y1q “ log

˜

ÿ

i

exppyiq

¸

´ yk « max
i

yi ´ yk

ENSAE 2023-2024 18/54

DL training pipeline

Cross entropy: in practice

§ Definition: ℓpx, yq “ ´ log
´

exppxyq
ř

i exppxiq

¯

.

§ PyTorch: criterion = nn.CrossEntropyLoss()

§ Several parameters (reduction=’sum’ or reduction=’mean’, see the doc)

§ criterion takes as input the scores (a tensor of shape rb, ds), and either a class index
per sample, or class probabilities for each sample.

§ Composition of nn.LogSoftmax() and nn.NLLLoss().

Gradient through a softmax can explode due to numerical errors (taken care of by
the Pytorch implementation of nn.CrossEntropyLoss() and nn.LogSoftmax()).

ENSAE 2023-2024 19/54

First-order optimization

First-order optimization
Gradient descent and co.

ENSAE 2023-2024 20/54

First-order optimization

First-order optimization

§ Find a minimizer θ‹ P Rd of a given objective function L : Rd Ñ R,

θ‹ P argmin
θPRd

Lpθq

§ Using an iterative algorithm relying on the gradient ∇Lpθtq at each iteration t ě 0.

source: https://distill.pub/2017/momentum/

ENSAE 2023-2024 21/54

First-order optimization

First-order optimization

Iterative optimization algorithms

§ Initialization: θ0 P Rd (important in practice!).

§ Iteration: Usually θt`1 “ φt pθt,∇Lpθtq, stq where st is a hidden variable that is also
updated at each iteration.

§ Stopping time: T ą 0 (also important in practice!).

Main difficulties in neural network training

§ Non-convexity: If L is convex, i.e. @θ, θ1,Lp θ`θ1

2 q ď
Lpθq`Lpθ1q

2 , the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.

§ High dimensionality: number of parameters d " 1000.

§ Access to the gradient: the gradient of L is too expensive to compute! In practice,
∇Lpθtq is replaced by a stochastic or mini-batch approximation r∇t.

ENSAE 2023-2024 22/54

First-order optimization

First-order optimization

Iterative optimization algorithms

§ Initialization: θ0 P Rd (important in practice!).

§ Iteration: Usually θt`1 “ φt pθt,∇Lpθtq, stq where st is a hidden variable that is also
updated at each iteration.

§ Stopping time: T ą 0 (also important in practice!).

Main difficulties in neural network training

§ Non-convexity: If L is convex, i.e. @θ, θ1,Lp θ`θ1

2 q ď
Lpθq`Lpθ1q

2 , the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.

§ High dimensionality: number of parameters d " 1000.

§ Access to the gradient: the gradient of L is too expensive to compute! In practice,
∇Lpθtq is replaced by a stochastic or mini-batch approximation r∇t.

ENSAE 2023-2024 22/54

First-order optimization

First-order optimization

Iterative optimization algorithms

§ Initialization: θ0 P Rd (important in practice!).

§ Iteration: Usually θt`1 “ φt pθt,∇Lpθtq, stq where st is a hidden variable that is also
updated at each iteration.

§ Stopping time: T ą 0 (also important in practice!).

Main difficulties in neural network training

§ Non-convexity: If L is convex, i.e. @θ, θ1,Lp θ`θ1

2 q ď
Lpθq`Lpθ1q

2 , the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.

§ High dimensionality: number of parameters d " 1000.

§ Access to the gradient: the gradient of L is too expensive to compute! In practice,
∇Lpθtq is replaced by a stochastic or mini-batch approximation r∇t.

ENSAE 2023-2024 22/54

First-order optimization

First-order optimization

Iterative optimization algorithms

§ Initialization: θ0 P Rd (important in practice!).

§ Iteration: Usually θt`1 “ φt pθt,∇Lpθtq, stq where st is a hidden variable that is also
updated at each iteration.

§ Stopping time: T ą 0 (also important in practice!).

Main difficulties in neural network training

§ Non-convexity: If L is convex, i.e. @θ, θ1,Lp θ`θ1

2 q ď
Lpθq`Lpθ1q

2 , the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.

§ High dimensionality: number of parameters d " 1000.

§ Access to the gradient: the gradient of L is too expensive to compute! In practice,
∇Lpθtq is replaced by a stochastic or mini-batch approximation r∇t.

ENSAE 2023-2024 22/54

First-order optimization

First-order optimization

Iterative optimization algorithms

§ Initialization: θ0 P Rd (important in practice!).

§ Iteration: Usually θt`1 “ φt pθt,∇Lpθtq, stq where st is a hidden variable that is also
updated at each iteration.

§ Stopping time: T ą 0 (also important in practice!).

Main difficulties in neural network training

§ Non-convexity: If L is convex, i.e. @θ, θ1,Lp θ`θ1

2 q ď
Lpθq`Lpθ1q

2 , the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.

§ High dimensionality: number of parameters d " 1000.

§ Access to the gradient: the gradient of L is too expensive to compute! In practice,
∇Lpθtq is replaced by a stochastic or mini-batch approximation r∇t.

ENSAE 2023-2024 22/54

First-order optimization

Gradient descent variants

§ Let Lipθq “ ℓpgθpxiq, yiq. Recall empirical risk minimization, aka training error:

min
θPRd

1

n

n
ÿ

i“1

Lipθq

§ Batch gradient descent: uses the true gradient, learning rate (or step-size) η ą 0,

θt`1 “ θt ´
η

n

n
ÿ

i“1

∇Lipθq

§ Stochastic gradient descent: gradient approximated with one random sample.

θt`1 “ θt ´ η∇Litpθq

§ Mini-batch gradient descent: gradient approximated with multiple random samples.

θt`1 “ θt ´
η

b

b
ÿ

i“1

∇Lib,tpθq

ENSAE 2023-2024 23/54

First-order optimization

Gradient descent variants

§ Let Lipθq “ ℓpgθpxiq, yiq. Recall empirical risk minimization, aka training error:

min
θPRd

1

n

n
ÿ

i“1

Lipθq

§ Batch gradient descent: uses the true gradient, learning rate (or step-size) η ą 0,

θt`1 “ θt ´
η

n

n
ÿ

i“1

∇Lipθq

§ Stochastic gradient descent: gradient approximated with one random sample.

θt`1 “ θt ´ η∇Litpθq

§ Mini-batch gradient descent: gradient approximated with multiple random samples.

θt`1 “ θt ´
η

b

b
ÿ

i“1

∇Lib,tpθq

ENSAE 2023-2024 23/54

First-order optimization

Gradient descent variants

§ Let Lipθq “ ℓpgθpxiq, yiq. Recall empirical risk minimization, aka training error:

min
θPRd

1

n

n
ÿ

i“1

Lipθq

§ Batch gradient descent: uses the true gradient, learning rate (or step-size) η ą 0,

θt`1 “ θt ´
η

n

n
ÿ

i“1

∇Lipθq

§ Stochastic gradient descent: gradient approximated with one random sample.

θt`1 “ θt ´ η∇Litpθq

§ Mini-batch gradient descent: gradient approximated with multiple random samples.

θt`1 “ θt ´
η

b

b
ÿ

i“1

∇Lib,tpθq

ENSAE 2023-2024 23/54

First-order optimization

Gradient descent variants

§ Let Lipθq “ ℓpgθpxiq, yiq. Recall empirical risk minimization, aka training error:

min
θPRd

1

n

n
ÿ

i“1

Lipθq

§ Batch gradient descent: uses the true gradient, learning rate (or step-size) η ą 0,

θt`1 “ θt ´
η

n

n
ÿ

i“1

∇Lipθq

§ Stochastic gradient descent: gradient approximated with one random sample.

θt`1 “ θt ´ η∇Litpθq

§ Mini-batch gradient descent: gradient approximated with multiple random samples.

θt`1 “ θt ´
η

b

b
ÿ

i“1

∇Lib,tpθq

ENSAE 2023-2024 23/54

First-order optimization

Some warnings about optimization in deep learning

Our final goal is to reduce the population risk, i.e. EpℓpgθpXq, Y qq!

§ We need to pay attention to overfitting in addition to using the optimization algorithm
to reduce the training error.

§ In this class, we focus specifically on the performance of the optimization algorithm in
minimizing the objective function, rather than the model’s generalization error.

§ In the next lessons, we will see techniques to avoid overfitting.

ENSAE 2023-2024 24/54

First-order optimization

Challenges

§ Mini-batch gradient descent is the algorithm of choice when training a neural network.
The term SGD is usually employed also when mini-batches are used!

§ Choosing a learning rate can be difficult. How to adapt the learning rate during training?
§ Why applying the same learning rate to all parameter updates?
§ How to escape saddle points where the gradient is close to zero in all dimension?

§ In the rest of the lecture, we will introduce modifications to (S)GD.
§ Nice survey by Sebastian Ruder: http://ruder.io/optimizing-gradient-descent/

source: Visualizing the Loss Landscape of Neural Nets, Li et.al., 2018

ENSAE 2023-2024 25/54

http://ruder.io/optimizing-gradient-descent/

First-order optimization

Momentum

§ Accelerating SGD by dampening oscillations, i.e. by averaging the last values of the latest
gradients.

vt`1 “ γvt ` η∇Lpθtq

θt`1 “ θt ´ vt`1

§ Why does it work? With gt “ ∇Lpθtq, we have for any k ě 0:

vt`1 “ γkvt´k ` η
k

ÿ

i“0

γigt´i

loooomoooon

average of last gradients

§ Typical value for γ “ 0.9.

ENSAE 2023-2024 26/54

First-order optimization

Momentum

§ Accelerating SGD by dampening oscillations, i.e. by averaging the last values of the latest
gradients.

vt`1 “ γvt ` η∇Lpθtq

θt`1 “ θt ´ vt`1

§ Why does it work? With gt “ ∇Lpθtq, we have for any k ě 0:

vt`1 “ γkvt´k ` η
k

ÿ

i“0

γigt´i

loooomoooon

average of last gradients

§ Typical value for γ “ 0.9.

ENSAE 2023-2024 26/54

First-order optimization

Adagrad

§ We would like to adapt our updates to each individual parameter, i.e. have a different
decreasing learning rate for each parameter.

st`1,i “ st,i ` ∇Lpθtq
2
i

θt`1,i “ θt,i ´
η

?
st`1,i ` ϵ

∇Lpθtqi

§ No manual tuning of the learning rate.

§ Typical default values: η “ 0.01 and ϵ “ 10´8.

source: Duchi et al., Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, JMLR 2011

ENSAE 2023-2024 27/54

First-order optimization

Adagrad

§ We would like to adapt our updates to each individual parameter, i.e. have a different
decreasing learning rate for each parameter.

st`1,i “ st,i ` ∇Lpθtq
2
i

θt`1,i “ θt,i ´
η

?
st`1,i ` ϵ

∇Lpθtqi

§ No manual tuning of the learning rate.

§ Typical default values: η “ 0.01 and ϵ “ 10´8.

source: Duchi et al., Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, JMLR 2011

ENSAE 2023-2024 27/54

First-order optimization

RMSProp

§ Problem with Adagrad, learning rate goes to zero and never forgets about the past.

§ Idea proposed by G. Hinton in his Coursera class: use exponential average.

st`1,i “ γst,i ` p1 ´ γq∇Lpθtq
2
i

θt`1,i “ θt,i ´
η

?
st`1,i ` ϵ

∇Lpθtqi

§ With a slight abuse of notation, we re-write the update as follows:

st`1 “ γst ` p1 ´ γq∇Lpθtq
2

θt`1 “ θt ´
η

?
st`1 ` ϵ

∇Lpθtq

§ Typical values: γ “ 0.9 and η “ 0.001.

source: Hinton Coursera lecture 6

ENSAE 2023-2024 28/54

First-order optimization

RMSProp

§ Problem with Adagrad, learning rate goes to zero and never forgets about the past.

§ Idea proposed by G. Hinton in his Coursera class: use exponential average.

st`1,i “ γst,i ` p1 ´ γq∇Lpθtq
2
i

θt`1,i “ θt,i ´
η

?
st`1,i ` ϵ

∇Lpθtqi

§ With a slight abuse of notation, we re-write the update as follows:

st`1 “ γst ` p1 ´ γq∇Lpθtq
2

θt`1 “ θt ´
η

?
st`1 ` ϵ

∇Lpθtq

§ Typical values: γ “ 0.9 and η “ 0.001.

source: Hinton Coursera lecture 6

ENSAE 2023-2024 28/54

First-order optimization

Adam

§ Mixing RMSProp and momentum, we get Adam = Adaptive moment Estimation.

mt`1 “ β1mt ` p1 ´ β1q∇Lpθtq

vt`1 “ β2vt ` p1 ´ β2q∇Lpθtq
2

m̂t`1 “
mt`1

1 ´ βt`1
1

v̂t`1 “
vt`1

1 ´ βt`1
2

θt`1 “ θt ´
η

a

v̂t`1 ` ϵ
m̂t`1

§ m̂t and v̂t are estimates for the first and second moments of the gradients. Because
m0 “ v0 “ 0, these estimates are biased towards 0, the factors p1 ´ βt`1q´1 are here to
counteract these biases.

§ Typical values: β1 “ 0.9, β2 “ 0.999 and ϵ “ 10´8.

source: Kingma et al. , Adam: a Method for Stochastic Optimization, ICLR 2015

ENSAE 2023-2024 29/54

First-order optimization

PyTorch optimizers

§ All have similar constructor torch.optim.*(params, lr=..., momentum=...).
Default values are different for all optimizers, check the doc.

§ params should be an iterable (like a list) containing the parameters to optimize over. It
can be obtained from any module with module.parameters().

§ The step method updates the internal state of the optimizer according to the grad
attributes of the params, and updates the latter according to the internal state.

ENSAE 2023-2024 30/54

First-order optimization

Pytorch training loop

Training over one epoch becomes:

model = YourModel()

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

for inputs, targets in train_loader:

outputs = model(inputs)

loss = criterion(outputs, targets)

optimizer.zero_grad()

loss.backward()

optimizer.step()

ENSAE 2023-2024 31/54

First-order optimization

Last details

Faster parallel computations with GPUs

§ To know if you have access to GPUs:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

print(’Using gpu: %s ’ % torch.cuda.is_available())

§ Tensors are allocated on a device using: x.to(device).

Testing, metrics and more

§ We need to create a test set separate from the training set to evaluate the model.

§ We need to store all loss values and accuracies after each epoch.

§ Set the model to model.train() or model.eval().

§ Perform multiple epochs.

ENSAE 2023-2024 32/54

First-order optimization

Updated Pytorch training loop

The training pipeline becomes: (dataloader Ñ model Ñ loss Ñ optimizer Ñ visualization)

model.to(device)

model.train()

for epoch in range(num_epochs):

running_loss = 0.

for inputs, targets in train_loader:

inputs, targets = inputs.to(device), targets.to(device)

outputs = model(inputs)

loss = criterion(outputs, targets)

optimizer.zero_grad()

loss.backward()

optimizer.step()

running_loss += loss.item()

print(f"Epoch {epoch}: Loss: {running_loss/n_data:.2f}")

ENSAE 2023-2024 33/54

First-order optimization

Pytorch test function

Test should not compute gradients, hence torch.no grad().

model.to(device)

model.eval()

running_loss, running_acc = 0., 0

with torch.no_grad():

for inputs, targets in train_loader:

inputs, targets = inputs.to(device), targets.to(device)

output = model(inputs)

loss = criterion(outputs, targets)

preds = torch.argmax(outputs,1)

running_loss += loss.item()

running_acc += torch.sum(preds == targets)

print(f"Loss: {running_loss/n_data:.2f} Acc: {running_acc/n_data:.2f}")

ENSAE 2023-2024 34/54

Image analysis

Image analysis
Introduction to convolutional neural networks

ENSAE 2023-2024 35/54

Image analysis

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

§ Object recognition challenge, from 2010 to 2017.

§ 1.2 million images (avg. 469x387), 1000 object classes.

source: ImageNet Large Scale Visual Recognition Challenge. Russakovsky et.al., 2015.

ENSAE 2023-2024 36/54

Image analysis

Classification accuracy on Imagenet

Performance of classification methods (top-5 accuracy)

§ Random strategy: 0.5%.

§ Human performance: Expert 1: 94.9%. Expert 2: 88%.

§ Before 2012: Feature extraction + SVMs, 74.2%.

§ Winners of 2012: CNN (AlexNet) 84.7%.

§ After 2012: Always DL architectures, current best « 99%.

Current leaderboard: https: // paperswithcode. com/ sota/ image-classification-on-imagenet

ENSAE 2023-2024 37/54

https://paperswithcode.com/sota/image-classification-on-imagenet

Image analysis

Classification accuracy on Imagenet

Performance of classification methods (top-5 accuracy)

§ Random strategy: 0.5%.

§ Human performance: Expert 1: 94.9%. Expert 2: 88%.

§ Before 2012: Feature extraction + SVMs, 74.2%.

§ Winners of 2012: CNN (AlexNet) 84.7%.

§ After 2012: Always DL architectures, current best « 99%.

Current leaderboard: https: // paperswithcode. com/ sota/ image-classification-on-imagenet

ENSAE 2023-2024 37/54

https://paperswithcode.com/sota/image-classification-on-imagenet

Image analysis

Classification accuracy on Imagenet

Performance of classification methods (top-5 accuracy)

§ Random strategy: 0.5%.

§ Human performance: Expert 1: 94.9%. Expert 2: 88%.

§ Before 2012: Feature extraction + SVMs, 74.2%.

§ Winners of 2012: CNN (AlexNet) 84.7%.

§ After 2012: Always DL architectures, current best « 99%.

Current leaderboard: https: // paperswithcode. com/ sota/ image-classification-on-imagenet

ENSAE 2023-2024 37/54

https://paperswithcode.com/sota/image-classification-on-imagenet

Image analysis

Classification accuracy on Imagenet

Performance of classification methods (top-5 accuracy)

§ Random strategy: 0.5%.

§ Human performance: Expert 1: 94.9%. Expert 2: 88%.

§ Before 2012: Feature extraction + SVMs, 74.2%.

§ Winners of 2012: CNN (AlexNet) 84.7%.

§ After 2012: Always DL architectures, current best « 99%.

Current leaderboard: https: // paperswithcode. com/ sota/ image-classification-on-imagenet

ENSAE 2023-2024 37/54

https://paperswithcode.com/sota/image-classification-on-imagenet

Image analysis

Encoding local information

§ We want to find sharp edges, round eyes, fur-like textures...

§ How can we encode these local characteristics?

§ How can we ensure translation invariance?

ENSAE 2023-2024 38/54

Image analysis

Convolutional Neural Networks

source: ImageNet Classification with Deep Convolutional Neural Networks. Krizhevsky et.al., 2012.

§ First idea introduced by Fukushima in 1980.

§ Linear layers in MLPs are replaced by convolution and pooling layers.

§ Higher-level structures are extracted via a hierarchical information processing.

ENSAE 2023-2024 39/54

Image analysis

Convolutions (1D)

§ Continuous setting: pf ˚ gqpuq “
ş`8

v“´8
fpvq gpu ´ vq dv

§ Discrete version: px ˚ yqi “
řm

j“1 xj yi´jrns

§ Pytorch implementation: px ˚ yqi “
ř

j xj yi`j (technically, a cross-correlation)

§ Key properties: Local operation, limited receptive field, translation equivariant.

ENSAE 2023-2024 40/54

Image analysis

Convolutions (1D)

§ Continuous setting: pf ˚ gqpuq “
ş`8

v“´8
fpvq gpu ´ vq dv

§ Discrete version: px ˚ yqi “
řm

j“1 xj yi´jrns

§ Pytorch implementation: px ˚ yqi “
ř

j xj yi`j (technically, a cross-correlation)

§ Key properties: Local operation, limited receptive field, translation equivariant.

ENSAE 2023-2024 40/54

Image analysis

Convolutions (1D)

§ Continuous setting: pf ˚ gqpuq “
ş`8

v“´8
fpvq gpu ´ vq dv

§ Discrete version: px ˚ yqi “
řm

j“1 xj yi´jrns

§ Pytorch implementation: px ˚ yqi “
ř

j xj yi`j (technically, a cross-correlation)

§ Key properties: Local operation, limited receptive field, translation equivariant.

ENSAE 2023-2024 40/54

Image analysis

Convolutions (1D)

§ Continuous setting: pf ˚ gqpuq “
ş`8

v“´8
fpvq gpu ´ vq dv

§ Discrete version: px ˚ yqi “
řm

j“1 xj yi´jrns

§ Pytorch implementation: px ˚ yqi “
ř

j xj yi`j (technically, a cross-correlation)

§ Key properties: Local operation, limited receptive field, translation equivariant.

ENSAE 2023-2024 40/54

Image analysis

Convolutions (1D)

§ Continuous setting: pf ˚ gqpuq “
ş`8

v“´8
fpvq gpu ´ vq dv

§ Discrete version: px ˚ yqi “
řm

j“1 xj yi´jrns

§ Pytorch implementation: px ˚ yqi “
ř

j xj yi`j (technically, a cross-correlation)

§ Key properties: Local operation, limited receptive field, translation equivariant.

ENSAE 2023-2024 40/54

Image analysis

Convolutions (1D)

§ Continuous setting: pf ˚ gqpuq “
ş`8

v“´8
fpvq gpu ´ vq dv

§ Discrete version: px ˚ yqi “
řm

j“1 xj yi´jrns

§ Pytorch implementation: px ˚ yqi “
ř

j xj yi`j (technically, a cross-correlation)

§ Key properties: Local operation, limited receptive field, translation equivariant.

ENSAE 2023-2024 40/54

Image analysis

Convolutions (1D)

§ Continuous setting: pf ˚ gqpuq “
ş`8

v“´8
fpvq gpu ´ vq dv

§ Discrete version: px ˚ yqi “
řm

j“1 xj yi´jrns

§ Pytorch implementation: px ˚ yqi “
ř

j xj yi`j (technically, a cross-correlation)

§ Key properties: Local operation, limited receptive field, translation equivariant.

ENSAE 2023-2024 40/54

Image analysis

Convolutions (1D)

§ Continuous setting: pf ˚ gqpuq “
ş`8

v“´8
fpvq gpu ´ vq dv

§ Discrete version: px ˚ yqi “
řm

j“1 xj yi´jrns

§ Pytorch implementation: px ˚ yqi “
ř

j xj yi`j (technically, a cross-correlation)

§ Key properties: Local operation, limited receptive field, translation equivariant.

ENSAE 2023-2024 40/54

Image analysis

Convolutions (2D)

source: https: // github. com/ vdumoulin/ conv_ arithmetic/ blob/ master/ README. md

Technical details
§ Receptive field: shape of the filter (typically 3x3).

§ Padding: Adding a boundary of K ą 0 layers of zeros (increases output image size).

§ Stride: do the computation for one pixel every K ą 0 (decreases output image size).

§ See in action: https://setosa.io/ev/image-kernels/
ENSAE 2023-2024 41/54

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
https://setosa.io/ev/image-kernels/

Image analysis

Convolution channels

§ Idea: Allows to store multiple local information (e.g. vertical/horizontal edges, corners,...)

§ Definition: Dense connections between channels, i.e. for each output channel k,
yk “

ř

l Wk,l ˚ xl ` bk where Wk,l is the filter for input channel l and output channel k.

§ Rule of thumb: number of channels increases while image size decreases.

ENSAE 2023-2024 42/54

Image analysis

Pooling

source: https: // github. com/ vdumoulin/ conv_ arithmetic/ blob/ master/ README. md

§ Main idea: Aggregate local information to reduce complexity.

§ Example: Is there an edge in this region of the image?

§ No parameters: Applies a simple function to local image patches.

§ Two major variants: AvgPool (mean over values) or MaxPool (max over values).

ENSAE 2023-2024 43/54

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

Image analysis

Example of a real-world CNN: VGG-16

source: https: // github. com/ vdumoulin/ conv_ arithmetic/ blob/ master/ README. md

§ Features: 13 layers of convolution and 5 layers of padding

§ Classifier: Last layers are an MLP with 3 linear layers.

§ First layers encode low-level information (e.g. edges or circles).

§ Last layers encode high-level information. (e.g. ”fluffiness” or ”eye-shaped elements”)

§ See in action: https://distill.pub/2017/feature-visualization/

ENSAE 2023-2024 44/54

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
https://distill.pub/2017/feature-visualization/

Image analysis

But... why convolutions?

§ Idea: why not take an MLP and make it translation invariant?

§ Equivariance: a function f is equivariant w.r.t. to a transformation τ iff f ˝ τ “ τ ˝ f .
§ Translations (circular): For any u P J1, NK and input x P RN , let τupxqi “ xi`urNs.

Lemma (convolutions)

The only linear functions that are translation equivariant are the convolutions.

Proof.
§ By linearity, we have fpxqi “

ř

j Mi,jxj .

§ Then, we have
ř

j Mi,jxj`urNs “
ř

j Mi`urNs,jxj and @i, j, u, Mi,j “ Mi`urNs,j`urNs.

ENSAE 2023-2024 45/54

Image analysis

But... why convolutions?

§ Idea: why not take an MLP and make it translation invariant?
§ Equivariance: a function f is equivariant w.r.t. to a transformation τ iff f ˝ τ “ τ ˝ f .

§ Translations (circular): For any u P J1, NK and input x P RN , let τupxqi “ xi`urNs.

Lemma (convolutions)

The only linear functions that are translation equivariant are the convolutions.

Proof.
§ By linearity, we have fpxqi “

ř

j Mi,jxj .

§ Then, we have
ř

j Mi,jxj`urNs “
ř

j Mi`urNs,jxj and @i, j, u, Mi,j “ Mi`urNs,j`urNs.

ENSAE 2023-2024 45/54

Image analysis

But... why convolutions?

§ Idea: why not take an MLP and make it translation invariant?
§ Equivariance: a function f is equivariant w.r.t. to a transformation τ iff f ˝ τ “ τ ˝ f .
§ Translations (circular): For any u P J1, NK and input x P RN , let τupxqi “ xi`urNs.

Lemma (convolutions)

The only linear functions that are translation equivariant are the convolutions.

Proof.
§ By linearity, we have fpxqi “

ř

j Mi,jxj .

§ Then, we have
ř

j Mi,jxj`urNs “
ř

j Mi`urNs,jxj and @i, j, u, Mi,j “ Mi`urNs,j`urNs.

ENSAE 2023-2024 45/54

Image analysis

But... why convolutions?

§ Idea: why not take an MLP and make it translation invariant?
§ Equivariance: a function f is equivariant w.r.t. to a transformation τ iff f ˝ τ “ τ ˝ f .
§ Translations (circular): For any u P J1, NK and input x P RN , let τupxqi “ xi`urNs.

Lemma (convolutions)

The only linear functions that are translation equivariant are the convolutions.

Proof.
§ By linearity, we have fpxqi “

ř

j Mi,jxj .

§ Then, we have
ř

j Mi,jxj`urNs “
ř

j Mi`urNs,jxj and @i, j, u, Mi,j “ Mi`urNs,j`urNs.

ENSAE 2023-2024 45/54

Image analysis

But... why convolutions?

§ Idea: why not take an MLP and make it translation invariant?
§ Equivariance: a function f is equivariant w.r.t. to a transformation τ iff f ˝ τ “ τ ˝ f .
§ Translations (circular): For any u P J1, NK and input x P RN , let τupxqi “ xi`urNs.

Lemma (convolutions)

The only linear functions that are translation equivariant are the convolutions.

Proof.
§ By linearity, we have fpxqi “

ř

j Mi,jxj .

§ Then, we have
ř

j Mi,jxj`urNs “
ř

j Mi`urNs,jxj and @i, j, u, Mi,j “ Mi`urNs,j`urNs.

ENSAE 2023-2024 45/54

ResNet

The ResNet architecture
Creating deeper neural networks

ENSAE 2023-2024 46/54

ResNet

How deep can we go?

§ Some properties require a large number of simple operations.

§ Limitations of VGG: can’t add too many layers (due to vanishing gradients).

ENSAE 2023-2024 47/54

ResNet

Residuals

§ Idea: only encode the residual: xpl`1q “ xplq ` gθpxplqq where gθ is a computation block.

§ Impact: Increases stability (gradients closer to 1, mapping closer to identity).

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

ENSAE 2023-2024 48/54

ResNet

The ResNet architecture

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

ENSAE 2023-2024 49/54

ResNet

The ResNet architecture

§ Even deeper ResNet models are possible: 34, 50, 101, and 152 layers!

ResNet50 compared to VGG

§ Accuracy: Superior in all vision tasks: 5.25% top-5 error vs 7.1%

§ Less parameters: 25M vs 138M

§ Computational complexity: 3.8B Flops vs 15.3B Flops

§ Fully Convolutional until the last layer

ENSAE 2023-2024 50/54

ResNet

The ResNet architecture

§ Even deeper ResNet models are possible: 34, 50, 101, and 152 layers!

ResNet50 compared to VGG

§ Accuracy: Superior in all vision tasks: 5.25% top-5 error vs 7.1%

§ Less parameters: 25M vs 138M

§ Computational complexity: 3.8B Flops vs 15.3B Flops

§ Fully Convolutional until the last layer

ENSAE 2023-2024 50/54

ResNet

Performance of ResNet architectures

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

ENSAE 2023-2024 51/54

ResNet

Impact on the loss landscape

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

ENSAE 2023-2024 52/54

ResNet

Performance of ResNet architectures

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

ENSAE 2023-2024 53/54

ResNet

Recap

§ CNN = convolutions + pooling (+ activations + BatchNorm)

§ Convolutions are (the only) local, translation equivariant linear mappings.

§ First layers extract low-level local features of the image.

§ Last layers extract high-level global features of the image.

§ Receptive field of neurons increases as we move towards the output.

§ Residuals improve stability and performance for very deep CNNs.

ENSAE 2023-2024 54/54

	Practical details
	

	Tensors
	

	DL training pipeline
	

	First-order optimization
	

	Image analysis
	

	ResNet
	

