Deep Learning

Lessons: **Kevin Scaman** TPs: Paul Lerner

Class overview

Lessons

1. Introduction, simple architectures (MLPs) and autodiff	09/02
2. Training pipeline, optimization and image analysis (CNNs)	16/02
3. Sequence regression (RNNs), stability and robustness	08/03
4. Generative models in vision and text (Transformers, GANs)	15/03
Practicals	
Tacticals	
TP1: MLPs and CNNs in Pytorch	01/03
TP2: RNNs and generative models	22/03

Projects

Overview

- Teams of up to 4 students
- DL task with Pytorch implementation
- You can chose your topics from: https://kscaman.github.io/teaching/2023_ENSAE_DL.html
- Can also propose one, but better to start with an existing library

Projects

Overview

- Teams of up to 4 students
- DL task with Pytorch implementation
- You can chose your topics from: https://kscaman.github.io/teaching/2023_ENSAE_DL.html
- Can also propose one, but better to start with an existing library

Deadlines

- (01/03) Team formation and topics: Send email (kevin.scaman@inria.fr) with team and topic (link to repo + short description)
- (29/03) Deliverables: Report (pdf) + code (link to a colab/git repo)

Projects

Guidelines and tips

- Usually better to start with an existing library.
- Re-obtaining the results and implementing one alternative method / adaptation to another setting / use on an application is sufficient.
- Usually, the first try doesn't work... Investigate why!
- ▶ We're not looking for SOTA performance... hard work is more valued. :)
- Don't start too late... debugging takes time.

Pytorch tensors The building blocks of DL implementations

Pytorch tensors

- A tensor is a d-dimensional array in Pytorch.
- Can store real values, vectors, matrices...
- Made to mimic Numpy arrays.

1	2	5	1	
0	4	0	0	
-4	5	3	-1	
3	0	2	6	
1	0	1	4	
0	0	3	0	
6	1	1	4	
2d tensor shape: (7,4)				

			-
2	5	1	╟
4	0	0	╟
5	3	-1	╟
0	2	6	╟
0	1	4	╟
0	3	0	╟
1	1	4	╟
	2 4 5 0 0 0 0 1	2 5 4 0 5 3 0 2 0 1 0 3 1 1	2 5 1 4 0 0 5 3 -1 0 2 6 0 1 4 0 3 0 1 1 4

3d tensor shape: (7,4,3)

10		6
411		

shape: (7)

- We can create a tensor with "x = torch.Tensor([[1,0,2],[3,2,3]])".
- We can clone a tensor with "x.clone()".
- Tensors have a data type, e.g. "x = torch.Tensor(..., dtype=torch.int64)".

1. Tensor creation:

- ▶ We can create a tensor with "x = torch.Tensor([[1,0,2],[3,2,3]])".
- We can clone a tensor with "x.clone()".
- Tensors have a data type, e.g. "x = torch.Tensor(..., dtype=torch.int64)".

2. Coordinate-wise operations: "x * y" (needs matching sizes), "torch.exp(x)", "x**2",...

- ▶ We can create a tensor with "x = torch.Tensor([[1,0,2],[3,2,3]])".
- We can clone a tensor with "x.clone()".
- Tensors have a data type, e.g. "x = torch.Tensor(..., dtype=torch.int64)".
- 2. Coordinate-wise operations: "x * y" (needs matching sizes), "torch.exp(x)", "x**2",...
- 3. Matrix multiplication: "x @ y".

- We can create a tensor with "x = torch.Tensor([[1,0,2],[3,2,3]])".
- We can clone a tensor with "x.clone()".
- Tensors have a data type, e.g. "x = torch.Tensor(..., dtype=torch.int64)".
- 2. Coordinate-wise operations: "x * y" (needs matching sizes), "torch.exp(x)", "x**2",...
- 3. Matrix multiplication: "x @ y".
- 4. **Reshaping:** "x.view(1,3,-1)" or "x.unsqueeze(0)" to add a dimension of size 1.

- ▶ We can create a tensor with "x = torch.Tensor([[1,0,2],[3,2,3]])".
- We can clone a tensor with "x.clone()".
- Tensors have a data type, e.g. "x = torch.Tensor(..., dtype=torch.int64)".
- 2. Coordinate-wise operations: "x * y" (needs matching sizes), "torch.exp(x)", "x**2",...
- 3. Matrix multiplication: "x @ y".
- 4. **Reshaping:** "x.view(1,3,-1)" or "x.unsqueeze(0)" to add a dimension of size 1.
- 5. Other operations: See doc ③. "torch.sum(x)", "torch.mean(x)"...

1. The first dimension is usually the samples ("x.shape[0]" is the batch size)

1. The first dimension is usually the samples ("x.shape[0]" is the batch size)

2. Gradients:

- Tensors can have a gradient in "x.grad".
- We can remove (and clone) this tensor from the computation graph by using "y = x.detach()".

1. The first dimension is usually the samples ("x.shape[0]" is the batch size)

2. Gradients:

- Tensors can have a gradient in "x.grad".
- We can remove (and clone) this tensor from the computation graph by using "y = x.detach()".
- 3. To NumPy: "x.numpy()" or "x.detach().numpy()".

1. The first dimension is usually the samples ("x.shape[0]" is the batch size)

2. Gradients:

- Tensors can have a gradient in "x.grad".
- We can remove (and clone) this tensor from the computation graph by using "y = x.detach()".
- 3. To NumPy: "x.numpy()" or "x.detach().numpy()".

4. Debug:

- Many errors can be unnoticed due to wrong tensor sizes and Python's dynamic typing...
- Always verify your intermediate computations with e.g. "print(x[:5])".
- Always verify your tensor shapes with "print(x.shape)"!

1. The first dimension is usually the samples ("x.shape[0]" is the batch size)

2. Gradients:

- Tensors can have a gradient in "x.grad".
- We can remove (and clone) this tensor from the computation graph by using "y = x.detach()".
- 3. To NumPy: "x.numpy()" or "x.detach().numpy()".

4. Debug:

- Many errors can be unnoticed due to wrong tensor sizes and Python's dynamic typing...
- Always verify your intermediate computations with e.g. "print(x[:5])".
- Always verify your tensor shapes with "print(x.shape)"!

A tensor of shape (5,1) is not the same a tensor of shape (5)!

Deep learning training pipeline Training and testing neural networks (in Pytorch)

Back to cats and dogs

Typical binary classification task. Objective is to distinguish cat images from dog images.

DL training pipeline

Pytorch training pipeline

Data loader \rightarrow model creation \rightarrow loss function \rightarrow optimization loop

Dataloading

Dataset class

torch.utils.data.Dataset is an abstract class representing a dataset. Your custom dataset should inherit Dataset and override the following methods:

- > __len__ so that len(dataset) returns the size of the dataset.
- > __getitem__ to support the indexing such that dataset[i] gives the ith sample.

Iterating through the dataset with Dataloader

By using a simple for loop to iterate over the data, we are missing out on:

- Batching the data,
- Shuffling the data,
- Load the data in parallel using multiprocessing workers.

torch.utils.data.DataLoader is an iterator which provides all these features.

Dataloading (advanced)

Transformations

- torchvision.transforms allows to easily compose data transformations to the data.
- img_transform = transforms.Compose([transforms.CenterCrop(224),

transforms.ToTensor(),
transforms.Normalize(mean, std)])

On most vision dataset, the transform field is applied before accessing the data.

Dataloading (advanced)

Transformations

- torchvision.transforms allows to easily compose data transformations to the data.
- img_transform = transforms.Compose([transforms.CenterCrop(224),

transforms.ToTensor(),
transforms.Normalize(mean, std)])

• On most vision dataset, the transform field is applied before accessing the data.

Dataloader

- To create a dataloader for the training set, use torch.utils.data.DataLoader: loader = DataLoader(dataset, batch size=64, shuffle=True, num workers=6)
- Includes a random mini-batch selection mechanism and parallelization.
- Used as an iterator: for inputs, targets in train_loader: ...

Model creation

Sequential neural networks and MLPs

- One liner for MLPs: model = nn.Sequential(nn.Linear(2,4), nn.ReLU(),...)
- More generally any sequence of already existing layers.
- How to create new layers or entirely new architectures?

The Module class

- ▶ All models are exentions of the nn.Module class.
- Need to implement a model.forward(x) function.
- Can be called as a function model(x).

Neural networks in Pytorch

The Module class

- All models are exentions of the nn.Module class.
- Need to implement a model.forward(x) function.
- Can be called as a function model(x).

Neural networks in Pytorch

The Module class

- All models are exentions of the nn.Module class.
- Need to implement a model.forward(x) function.
- Can be called as a function model(x).

```
Example (function of two variables)
class YourModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.lin = nn.Linear(10, 100)
    def forward(self, x, y)
        x = self.lin(x)
```

```
return y + torch.exp(torch.mean(x, dim=1))
```

DL training pipeline

Neural networks in Pytorch (2)

A function backward is automatically implemented to perform **backpropagation**.

DL training pipeline

Neural networks in Pytorch (2)

- A function backward is automatically implemented to perform backpropagation.
- By default, the parameters model.parameters() are randomly initialized.

Neural networks in Pytorch (2)

- A function backward is automatically implemented to perform **backpropagation**.
- By default, the parameters model.parameters() are randomly initialized.
- Hierarchical structure: All layers also extend nn.Module, and any module can be used in another module. All modules used by a model are accessible via model.children().

Loss functions (recap)

Empirical risk minimization

Let $(x_i, y_i)_{i \in [\![1,n]\!]}$ be a collection of n observations drawn independently according to \mathcal{D} . Then, the objective of *empirical risk minimization* (ERM) is to find a minimizer $\hat{\theta}_n \in \mathbb{R}^p$ of

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(g_\theta(x_i), y_i)$$

Loss functions (recap)

Empirical risk minimization

Let $(x_i, y_i)_{i \in [\![1,n]\!]}$ be a collection of n observations drawn independently according to \mathcal{D} . Then, the objective of *empirical risk minimization* (ERM) is to find a minimizer $\hat{\theta}_n \in \mathbb{R}^p$ of

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(g_\theta(x_i), y_i)$$

Losses used for training

- Regression: Mean sqaure error (MSE) $\ell(y,y') = \|y-y'\|_2^2 = \sum_i (y_i y'_i)^2$
- Classification: Cross entropy (CE) $\ell(y, y') = -\sum_i y'_i \ln\left(\exp(y_i) / \sum_j \exp(y_j)\right)$

Cross entropy

▶ Intuition: The model outputs a score for each class $y_i = g_{\theta}(x)$. We create a probability on the classes $p_i = \frac{\exp(y_i)}{\sum_j \exp(y_j)}$. We then take the negative logarithm of the true class's probability $\ell(y, y') = -\log(p_k)$, where $k \in [\![1, C]\!]$ s.t. $y'_i = \mathbb{1}\{i = k\}$.

Cross entropy

- Intuition: The model outputs a score for each class y_i = g_θ(x). We create a probability on the classes p_i = exp(y_i)/∑_j exp(y_j). We then take the negative logarithm of the true class's probability ℓ(y, y') = -log (p_k), where k ∈ [1, C] s.t. y'_i = 1{i = k}.
 Interpretation #1: Minimizing cross entropy is equivalent to maximum likelihood
- Interpretation #1: Minimizing cross entropy is equivalent to maximum likelihood estimation for the probabilistic model of the data samples (X_i, Y_i) such that $\log \mathbb{P}(Y_i = k \mid X_i) \propto g_{\theta}(X_i)_k$ where X_i are i.i.d. and independent of θ , as

$$\mathbb{P}_{\theta}((X_i, Y_i)) = \prod_i \mathbb{P}(X_i) \mathbb{P}_{\theta}(Y_i \mid X_i) \propto \prod_i \frac{\exp(g_{\theta}(X_i)_{Y_i})}{\sum_k \exp(g_{\theta}(X_i)_k)}$$

Cross entropy

- Intuition: The model outputs a score for each class $y_i = g_{\theta}(x)$. We create a probability on the classes $p_i = \frac{\exp(y_i)}{\sum_j \exp(y_j)}$. We then take the negative logarithm of the true class's probability $\ell(y, y') = -\log(p_k)$, where $k \in [\![1, C]\!]$ s.t. $y'_i = \mathbb{1}\{i = k\}$.
- Interpretation #1: Minimizing cross entropy is equivalent to maximum likelihood estimation for the probabilistic model of the data samples (X_i, Y_i) such that $\log \mathbb{P}(Y_i = k \mid X_i) \propto g_{\theta}(X_i)_k$ where X_i are i.i.d. and independent of θ , as

$$\mathbb{P}_{\theta}((X_i, Y_i)) = \prod_i \mathbb{P}(X_i) \mathbb{P}_{\theta}(Y_i \mid X_i) \propto \prod_i \frac{\exp(g_{\theta}(X_i)_{Y_i})}{\sum_k \exp(g_{\theta}(X_i)_k)}$$

▶ Interpretation #2: Difference between the scores of the predicted and true classes.

$$\ell(y, y') = \log\left(\sum_{i} \exp(y_i)\right) - y_k \approx \max_{i} y_i - y_k$$

Cross entropy: in practice

- **Definition:** $\ell(x, y) = -\log\left(\frac{\exp(x_y)}{\sum_i \exp(x_i)}\right).$
- PyTorch: criterion = nn.CrossEntropyLoss()
- Several parameters (reduction='sum' or reduction='mean', see the doc)
- criterion takes as input the scores (a tensor of shape [b, d]), and either a class index per sample, or class probabilities for each sample.
- Composition of nn.LogSoftmax() and nn.NLLLoss().

Gradient through a softmax can explode due to numerical errors (taken care of by the Pytorch implementation of nn.CrossEntropyLoss() and nn.LogSoftmax()).

First-order optimization Gradient descent and co.
Find a **minimizer** $\theta^{\star} \in \mathbb{R}^d$ of a given objective function $\mathcal{L} : \mathbb{R}^d \to \mathbb{R}$,

```
\theta^{\star} \in \operatorname*{argmin}_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta)
```

• Using an iterative algorithm relying on the **gradient** $\nabla \mathcal{L}(\theta_t)$ at each iteration $t \ge 0$.

source: https://distill.pub/2017/momentum/

Iterative optimization algorithms

- ▶ Initialization: $\theta_0 \in \mathbb{R}^d$ (important in practice!).
- **Iteration:** Usually $\theta_{t+1} = \varphi_t(\theta_t, \nabla \mathcal{L}(\theta_t), s_t)$ where s_t is a hidden variable that is also updated at each iteration.
- **Stopping time:** T > 0 (also important in practice!).

Iterative optimization algorithms

- Initialization: $\theta_0 \in \mathbb{R}^d$ (important in practice!).
- **Iteration:** Usually $\theta_{t+1} = \varphi_t(\theta_t, \nabla \mathcal{L}(\theta_t), s_t)$ where s_t is a hidden variable that is also updated at each iteration.
- **Stopping time:** T > 0 (also important in practice!).

Main difficulties in neural network training

Iterative optimization algorithms

- Initialization: $\theta_0 \in \mathbb{R}^d$ (important in practice!).
- **Iteration:** Usually $\theta_{t+1} = \varphi_t(\theta_t, \nabla \mathcal{L}(\theta_t), s_t)$ where s_t is a hidden variable that is also updated at each iteration.
- **Stopping time:** T > 0 (also important in practice!).

Main difficulties in neural network training

▶ **Non-convexity:** If \mathcal{L} is **convex**, i.e. $\forall \theta, \theta', \mathcal{L}(\frac{\theta+\theta'}{2}) \leq \frac{\mathcal{L}(\theta)+\mathcal{L}(\theta')}{2}$, the optimization problem is **simple**. Most theoretical results use this assumption to prove convergence.

Iterative optimization algorithms

- Initialization: $\theta_0 \in \mathbb{R}^d$ (important in practice!).
- **Iteration:** Usually $\theta_{t+1} = \varphi_t(\theta_t, \nabla \mathcal{L}(\theta_t), s_t)$ where s_t is a hidden variable that is also updated at each iteration.
- **Stopping time:** T > 0 (also important in practice!).

Main difficulties in neural network training

- ▶ **Non-convexity:** If \mathcal{L} is **convex**, i.e. $\forall \theta, \theta', \mathcal{L}(\frac{\theta+\theta'}{2}) \leq \frac{\mathcal{L}(\theta)+\mathcal{L}(\theta')}{2}$, the optimization problem is **simple**. Most theoretical results use this assumption to prove convergence.
- **High dimensionality:** number of parameters $d \gg 1000$.

Iterative optimization algorithms

- ▶ Initialization: $\theta_0 \in \mathbb{R}^d$ (important in practice!).
- **Iteration:** Usually $\theta_{t+1} = \varphi_t(\theta_t, \nabla \mathcal{L}(\theta_t), s_t)$ where s_t is a hidden variable that is also updated at each iteration.
- **Stopping time:** T > 0 (also important in practice!).

Main difficulties in neural network training

- ▶ Non-convexity: If \mathcal{L} is convex, i.e. $\forall \theta, \theta', \mathcal{L}(\frac{\theta+\theta'}{2}) \leq \frac{\mathcal{L}(\theta) + \mathcal{L}(\theta')}{2}$, the optimization problem is simple. Most theoretical results use this assumption to prove convergence.
- High dimensionality: number of parameters $d \gg 1000$.
- Access to the gradient: the gradient of \mathcal{L} is too expensive to compute! In practice, $\nabla \mathcal{L}(\theta_t)$ is replaced by a stochastic or mini-batch approximation $\widetilde{\nabla}_t$.

▶ Let $\mathcal{L}_i(\theta) = \ell(g_\theta(x_i), y_i)$. Recall empirical risk minimization, aka training error:

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \mathcal{L}_i(\theta)$$

▶ Let $\mathcal{L}_i(\theta) = \ell(g_\theta(x_i), y_i)$. Recall empirical risk minimization, aka training error:

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \mathcal{L}_i(\theta)$$

Batch gradient descent: uses the true gradient, learning rate (or step-size) $\eta > 0$,

$$\theta_{t+1} = \theta_t - \frac{\eta}{n} \sum_{i=1}^n \nabla \mathcal{L}_i(\theta)$$

▶ Let $\mathcal{L}_i(\theta) = \ell(g_\theta(x_i), y_i)$. Recall empirical risk minimization, aka training error:

Batch gradient descent: uses the true gradient, learning rate (or step-size) $\eta > 0$,

$$\theta_{t+1} = \theta_t - \frac{\eta}{n} \sum_{i=1}^n \nabla \mathcal{L}_i(\theta)$$

Stochastic gradient descent: gradient approximated with one random sample.

$$\theta_{t+1} = \theta_t - \eta \nabla \mathcal{L}_{i_t}(\theta)$$

▶ Let $\mathcal{L}_i(\theta) = \ell(g_\theta(x_i), y_i)$. Recall empirical risk minimization, aka training error:

Batch gradient descent: uses the true gradient, learning rate (or step-size) $\eta > 0$,

$$\theta_{t+1} = \theta_t - \frac{\eta}{n} \sum_{i=1}^n \nabla \mathcal{L}_i(\theta)$$

Stochastic gradient descent: gradient approximated with one random sample.

$$\theta_{t+1} = \theta_t - \eta \nabla \mathcal{L}_{i_t}(\theta)$$

Mini-batch gradient descent: gradient approximated with multiple random samples.

$$\theta_{t+1} = \theta_t - \frac{\eta}{b} \sum_{i=1}^{b} \nabla \mathcal{L}_{i_{b,t}}(\theta)$$

Some warnings about optimization in deep learning

Our final goal is to reduce the **population risk**, i.e. $\mathbb{E}(\ell(g_{\theta}(X), Y))!$

- We need to pay attention to overfitting in addition to using the optimization algorithm to reduce the training error.
- In this class, we focus specifically on the **performance** of the optimization algorithm in minimizing the objective function, rather than the model's generalization error.
- In the next lessons, we will see techniques to avoid overfitting.

Challenges

- Mini-batch gradient descent is the algorithm of choice when training a neural network. The term SGD is usually employed also when mini-batches are used!
 - Choosing a learning rate can be difficult. How to **adapt the learning rate** during training?
 - Why applying the same learning rate to all parameter updates?
 - How to escape saddle points where the gradient is close to zero in all dimension?
- > In the rest of the lecture, we will introduce modifications to (S)GD.
- Nice survey by Sebastian Ruder: http://ruder.io/optimizing-gradient-descent/

source: Visualizing the Loss Landscape of Neural Nets, Li et.al., 2018

Momentum

Accelerating SGD by dampening oscillations, i.e. by averaging the last values of the latest gradients.

$$v_{t+1} = \gamma v_t + \eta \nabla \mathcal{L}(\theta_t)$$

$$\theta_{t+1} = \theta_t - v_{t+1}$$

Momentum

Accelerating SGD by dampening oscillations, i.e. by averaging the last values of the latest gradients.

$$v_{t+1} = \gamma v_t + \eta \nabla \mathcal{L}(\theta_t)$$

$$\theta_{t+1} = \theta_t - v_{t+1}$$

• Why does it work? With $g_t = \nabla \mathcal{L}(\theta_t)$, we have for any $k \ge 0$:

$$v_{t+1} = \gamma^k v_{t-k} + \eta \qquad \sum_{i=0}^k \gamma^i g_{t-i}$$

average of last gradients

• Typical value for $\gamma = 0.9$.

Adagrad

We would like to adapt our updates to each individual parameter, i.e. have a different decreasing learning rate for each parameter.

$$s_{t+1,i} = s_{t,i} + \nabla \mathcal{L}(\theta_t)_i^2$$

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{s_{t+1,i} + \epsilon}} \nabla \mathcal{L}(\theta_t)_i$$

Adagrad

We would like to adapt our updates to each individual parameter, i.e. have a different decreasing learning rate for each parameter.

$$s_{t+1,i} = s_{t,i} + \nabla \mathcal{L}(\theta_t)_i^2$$

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{s_{t+1,i} + \epsilon}} \nabla \mathcal{L}(\theta_t)_i$$

- No manual tuning of the learning rate.
- Typical default values: $\eta = 0.01$ and $\epsilon = 10^{-8}$.

source: Duchi et al., Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, JMLR 2011

RMSProp

- > Problem with Adagrad, learning rate goes to zero and never forgets about the past.
- ▶ Idea proposed by G. Hinton in his Coursera class: use exponential average.

$$s_{t+1,i} = \gamma s_{t,i} + (1-\gamma)\nabla \mathcal{L}(\theta_t)_i^2$$
$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{s_{t+1,i} + \epsilon}}\nabla \mathcal{L}(\theta_t)_i$$

RMSProp

- > Problem with Adagrad, learning rate goes to zero and never forgets about the past.
- ▶ Idea proposed by G. Hinton in his Coursera class: use exponential average.

$$s_{t+1,i} = \gamma s_{t,i} + (1-\gamma)\nabla \mathcal{L}(\theta_t)_i^2$$
$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{s_{t+1,i} + \epsilon}}\nabla \mathcal{L}(\theta_t)_i$$

▶ With a slight abuse of notation, we re-write the update as follows:

$$s_{t+1} = \gamma s_t + (1 - \gamma) \nabla \mathcal{L}(\theta_t)^2$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{s_{t+1} + \epsilon}} \nabla \mathcal{L}(\theta_t)$$

• Typical values: $\gamma = 0.9$ and $\eta = 0.001$.

source: Hinton Coursera lecture 6

ENSAE

Adam

Mixing RMSProp and momentum, we get Adam = Adaptive moment Estimation.

$$m_{t+1} = \beta_1 m_t + (1 - \beta_1) \nabla \mathcal{L}(\theta_t)$$

$$v_{t+1} = \beta_2 v_t + (1 - \beta_2) \nabla \mathcal{L}(\theta_t)^2$$

$$\hat{m}_{t+1} = \frac{m_{t+1}}{1 - \beta_1^{t+1}}$$

$$\hat{v}_{t+1} = \frac{v_{t+1}}{1 - \beta_2^{t+1}}$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_{t+1}} + \epsilon} \hat{m}_{t+1}$$

- \hat{m}_t and \hat{v}_t are estimates for the first and second moments of the gradients. Because $m_0 = v_0 = 0$, these estimates are biased towards 0, the factors $(1 \beta^{t+1})^{-1}$ are here to counteract these biases.
- Typical values: $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$.

source: Kingma et al., Adam: a Method for Stochastic Optimization, ICLR 2015

ENSA

PyTorch optimizers

- All have similar constructor torch.optim.*(params, lr=..., momentum=...). Default values are different for all optimizers, check the doc.
- params should be an iterable (like a list) containing the parameters to optimize over. It can be obtained from any module with module.parameters().
- The step method updates the internal state of the optimizer according to the grad attributes of the params, and updates the latter according to the internal state.

Pytorch training loop

Training over one epoch becomes:

```
model = YourModel()
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
```

```
for inputs, targets in train_loader:
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

Last details

Faster parallel computations with GPUs

To know if you have access to GPUs:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Using gpu: %s ' % torch.cuda.is_available())

Tensors are allocated on a device using: x.to(device).

Testing, metrics and more

- We need to create a **test set** separate from the training set to **evaluate** the model.
- We need to store all loss values and accuracies after each epoch.
- Set the model to model.train() or model.eval().
- Perform multiple epochs.

Updated Pytorch training loop

```
The training pipeline becomes: (dataloader \rightarrow model \rightarrow loss \rightarrow optimizer \rightarrow visualization)
model.to(device)
model.train()
for epoch in range(num_epochs):
    running_loss = 0.
    for inputs, targets in train_loader:
         inputs, targets = inputs.to(device), targets.to(device)
         outputs = model(inputs)
         loss = criterion(outputs, targets)
         optimizer.zero_grad()
         loss.backward()
         optimizer.step()
         running_loss += loss.item()
    print(f"Epoch {epoch}: Loss: {running_loss/n_data:.2f}")
```

Pytorch test function

Test should not compute gradients, hence torch.no_grad().

```
model.to(device)
model.eval()
running_loss, running_acc = 0., 0
with torch.no_grad():
    for inputs, targets in train_loader:
        inputs, targets = inputs.to(device), targets.to(device)
        output = model(inputs)
        loss = criterion(outputs, targets)
        preds = torch.argmax(outputs,1)
        running_loss += loss.item()
        running_acc += torch.sum(preds == targets)
    print(f"Loss: {running_loss/n_data:.2f} Acc: {running_acc/n_data:.2f}")
```

Image analysis Introduction to convolutional neural networks

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

- Object recognition challenge, from 2010 to 2017.
- ▶ 1.2 million images (avg. 469×387), 1000 object classes.

source: ImageNet Large Scale Visual Recognition Challenge. Russakovsky et.al., 2015.

ENSAE

Performance of classification methods (top-5 accuracy)

- **Random strategy:** 0.5%.
- **Human performance:** Expert 1: 94.9%. Expert 2: 88%.

Performance of classification methods (top-5 accuracy)

- **Random strategy:** 0.5%.
- **Human performance:** Expert 1: 94.9%. Expert 2: 88%.
- **Before 2012:** Feature extraction + SVMs, 74.2%.

Performance of classification methods (top-5 accuracy)

- **Random strategy:** 0.5%.
- **Human performance:** Expert 1: 94.9%. Expert 2: 88%.
- **Before 2012:** Feature extraction + SVMs, 74.2%.
- Winners of 2012: CNN (AlexNet) 84.7%.

Performance of classification methods (top-5 accuracy)

- **Random strategy:** 0.5%.
- **Human performance:** Expert 1: 94.9%. Expert 2: 88%.
- **Before 2012:** Feature extraction + SVMs, 74.2%.
- Winners of 2012: CNN (AlexNet) 84.7%.
- After 2012: Always DL architectures, current best \approx 99%.

 ${\it Current \ leaderboard: \ https://paperswithcode.\ com/sota/image-classification-on-imagenet}$

Encoding local information

- ▶ We want to find sharp edges, round eyes, fur-like textures...
- How can we encode these local characteristics?
- How can we ensure translation invariance?

Convolutional Neural Networks

source: ImageNet Classification with Deep Convolutional Neural Networks. Krizhevsky et.al., 2012.

- First idea introduced by **Fukushima in 1980**.
- Linear layers in MLPs are replaced by convolution and pooling layers.
- Higher-level structures are extracted via a hierarchical information processing.

lmage analysis

Convolutions (1D)

lmage analysis

Convolutions (1D)

• Continuous setting: $(f * g)(u) = \int_{v=-\infty}^{+\infty} f(v) g(u-v) dv$

Convolutions (1D)

▶ Continuous setting: (f * g)(u) = ∫_{v=-∞}^{+∞} f(v) g(u - v) dv
▶ Discrete version: (x * y)_i = ∑_{j=1}^m x_j y_{i-j[n]}

Convolutions (1D)

- Continuous setting: $(f * g)(u) = \int_{v=-\infty}^{+\infty} f(v) g(u-v) dv$
- Discrete version: $(x * y)_i = \sum_{j=1}^m x_j y_{i-j[n]}$
- Pytorch implementation: $(x * y)_i = \sum_j x_j y_{i+j}$ (technically, a cross-correlation)
- Key properties: Local operation, limited receptive field, translation equivariant.

Convolutions (2D)

source: https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

Technical details

- **Receptive field:** shape of the filter (typically 3x3).
- **Padding:** Adding a boundary of K > 0 layers of **zeros** (increases output image size).
- **Stride:** do the computation for one pixel every K > 0 (decreases output image size).
- See in action: https://setosa.io/ev/image-kernels/

ENSAE

Convolution channels

- Idea: Allows to store multiple local information (e.g. vertical/horizontal edges, corners,...)
- ▶ Definition: Dense connections between channels, i.e. for each output channel k, y_k = ∑_l W_{k,l} * x_l + b_k where W_{k,l} is the filter for input channel l and output channel k.
 ▶ Rule of thumb: number of channels increases while image size decreases.

Pooling

source: https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

- Main idea: Aggregate local information to reduce complexity.
- **Example:** Is there an edge in this region of the image?
- **No parameters:** Applies a simple function to local image patches.
- **Two major variants: AvgPool** (mean over values) or **MaxPool** (max over values).

Image analysis

Example of a real-world CNN: VGG-16

source: https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

- Features: 13 layers of convolution and 5 layers of padding
- Classifier: Last layers are an MLP with 3 linear layers.
- First layers encode **low-level** information (e.g. edges or circles).
- Last layers encode high-level information. (e.g. "fluffiness" or "eye-shaped elements")
- See in action: https://distill.pub/2017/feature-visualization/

lmage analysis

But... why convolutions?

Idea: why not take an MLP and make it translation invariant?

- Idea: why not take an MLP and make it translation invariant?
- **Equivariance:** a function f is equivariant w.r.t. to a transformation τ iff $f \circ \tau = \tau \circ f$.

- Idea: why not take an MLP and make it translation invariant?
- Equivariance: a function f is equivariant w.r.t. to a transformation τ iff $f \circ \tau = \tau \circ f$.
- ▶ Translations (circular): For any $u \in \llbracket 1, N \rrbracket$ and input $x \in \mathbb{R}^N$, let $\tau_u(x)_i = x_{i+u[N]}$.

- Idea: why not take an MLP and make it translation invariant?
- **Equivariance:** a function f is equivariant w.r.t. to a transformation τ iff $f \circ \tau = \tau \circ f$.
- ▶ **Translations (circular):** For any $u \in [[1, N]]$ and input $x \in \mathbb{R}^N$, let $\tau_u(x)_i = x_{i+u[N]}$.

Lemma (convolutions)

The only linear functions that are translation equivariant are the convolutions.

- Idea: why not take an MLP and make it translation invariant?
- **Equivariance:** a function f is equivariant w.r.t. to a transformation τ iff $f \circ \tau = \tau \circ f$.
- ▶ **Translations (circular):** For any $u \in [[1, N]]$ and input $x \in \mathbb{R}^N$, let $\tau_u(x)_i = x_{i+u[N]}$.

Lemma (convolutions)

The only linear functions that are translation equivariant are the convolutions.

Proof.

- By linearity, we have $f(x)_i = \sum_j M_{i,j} x_j$.
- ▶ Then, we have $\sum_j M_{i,j} x_{j+u[N]} = \sum_j M_{i+u[N],j} x_j$ and $\forall i, j, u$, $M_{i,j} = M_{i+u[N],j+u[N]}$.

The ResNet architecture Creating deeper neural networks

How deep can we go?

Some properties require a large number of simple operations.

Limitations of VGG: can't add too many layers (due to vanishing gradients).

		12		
N U	36	28.	ы	

Residuals

Idea: only encode the residual: x^(l+1) = x^(l) + g_θ(x^(l)) where g_θ is a computation block.
Impact: Increases stability (gradients closer to 1, mapping closer to identity).

ENSAE

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

The ResNet architecture

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

ENSAE

The ResNet architecture

Even deeper ResNet models are possible: 34, 50, 101, and 152 layers!

The ResNet architecture

Even deeper ResNet models are possible: 34, 50, 101, and 152 layers!

ResNet50 compared to VGG

- ▶ Accuracy: Superior in all vision tasks: 5.25% top-5 error vs 7.1%
- Less parameters: 25M vs 138M
- Computational complexity: 3.8B Flops vs 15.3B Flops
- Fully Convolutional until the last layer

Performance of ResNet architectures

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

Impact on the loss landscape

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The vertical axis is logarithmic to show dynamic range. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

-				
	٩.6	-	2	_
	ωc.			

Performance of ResNet architectures

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Table 5. Error rates (%) of **ensembles**. The top-5 error is on the test set of ImageNet and reported by the test server.

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

Recap

- CNN = convolutions + pooling (+ activations + BatchNorm)
- Convolutions are (the only) local, translation equivariant linear mappings.
- First layers extract low-level **local** features of the image.
- Last layers extract high-level **global** features of the image.
- ▶ Receptive field of neurons increases as we move towards the output.
- Residuals improve stability and performance for very deep CNNs.