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Practical details

Lessons
Introduction, simple architectures (MLPs) and autodiff 09/02
Training pipeline, optimization and image analysis (CNNs) 16/02
Sequence regression (RNNs), stability and robustness 08/03
Generative models in vision and text (Transformers, GANs) 15/03
Practicals
TP1: MLPs and CNNs in Pytorch 01/03
TP2: RNNs and generative models 22/03
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Practical details

Overview
Teams of up to 4 students
DL task with Pytorch implementation

You can chose your topics from:
https://kscaman.github.io/teaching/2023_ENSAE_DL.html

Can also propose one, but better to start with an existing library

ENSAE 2023-2024 3/54


https://kscaman.github.io/teaching/2023_ENSAE_DL.html
kevin.scaman@inria.fr

Practical details

Overview
Teams of up to 4 students
DL task with Pytorch implementation

You can chose your topics from:
https://kscaman.github.io/teaching/2023_ENSAE_DL.html

Can also propose one, but better to start with an existing library

Deadlines

(01/03) Team formation and topics: Send email (kevin.scaman@inria.fr) with
team and topic (link to repo + short description)

(29/03) Deliverables: Report (pdf) + code (link to a colab/git repo)
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Practical details

Guidelines and tips
Usually better to start with an existing library.

Re-obtaining the results and implementing one alternative method / adaptation to
another setting / use on an application is sufficient.

Usually, the first try doesn't work... Investigate why!
We're not looking for SOTA performance... hard work is more valued. :)

Don't start too late... debugging takes time.
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Tensors

Pytorch tensors

The building blocks of DL implementations
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Tensors

A tensor is a d—dimensional array in Pytorch.
Can store real values, vectors, matrices...
Made to mimic Numpy arrays.
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Tensors

Tensor creation:

We can create a tensor with "x = torch.Tensor([[1,0,2],[3,2,3]1]1)".
We can clone a tensor with "x.clone()".
Tensors have a data type, e.g. "x = torch.Tensor(..., dtype=torch.int64)".
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Tensors

Tensor creation:

We can create a tensor with "x = torch.Tensor([[1,0,2],[3,2,3]11)".

We can clone a tensor with "x.clone()".

Tensors have a data type, e.g. "x = torch.Tensor(..., dtype=torch.int64)".
Coordinate-wise operations: "x * y" (needs matching sizes), "torch.exp(x)",
Txkx2" L
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Tensors

Tensor creation:

We can create a tensor with "x = torch.Tensor([[1,0,2],[3,2,3]1]1)".
We can clone a tensor with "x.clone()".
Tensors have a data type, e.g. "x = torch.Tensor(..., dtype=torch.int64)".

Coordinate-wise operations: "x * y" (needs matching sizes), "torch.exp(x)",
Txwk2"

Matrix multiplication: "x @ y".
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Tensors

Tensor creation:

We can create a tensor with "x = torch.Tensor([[1,0,2],[3,2,3]1]1)".
We can clone a tensor with "x.clone()".
Tensors have a data type, e.g. "x = torch.Tensor(..., dtype=torch.int64)".

Coordinate-wise operations: "x * y" (needs matching sizes), "torch.exp(x)",
Txwk2"

Matrix multiplication: "x @ y".

Reshaping: "x.view(1,3,-1)" or "x.unsqueeze(0)" to add a dimension of size 1.
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Tensors

Tensor creation:

We can create a tensor with "x = torch.Tensor([[1,0,2],[3,2,3]1]1)".
We can clone a tensor with "x.clone()".
Tensors have a data type, e.g. "x = torch.Tensor(..., dtype=torch.int64)".

Coordinate-wise operations: "x * y" (needs matching sizes), "torch.exp(x)",
Txwk2"

Matrix multiplication: "x @ y".
Reshaping: "x.view(1,3,-1)" or "x.unsqueeze(0)" to add a dimension of size 1.
Other operations: See doc ©. "torch.sum(x)", "torch.mean(x)"...
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Tensors

1. The first dimension is usually the samples ("x.shape[0]" is the batch size)
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Tensors

The first dimension is usually the samples ("x.shape[0]" is the batch size)
Gradients:

Tensors can have a gradient in "x.grad”.
We can remove (and clone) this tensor from the computation graph by using "y =
x.detach()".
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Tensors

The first dimension is usually the samples ("x.shape[0]" is the batch size)
Gradients:

Tensors can have a gradient in "x.grad”.
We can remove (and clone) this tensor from the computation graph by using "y =
x.detach()".

To NumPy: "x.numpy ()" or "x.detach() .numpy()".
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Tensors

The first dimension is usually the samples ("x.shape[0]" is the batch size)
Gradients:
Tensors can have a gradient in "x.grad”.
We can remove (and clone) this tensor from the computation graph by using "y =
x.detach()".
To NumPy: "x.numpy ()" or "x.detach() .numpy()".
Debug:
Many errors can be unnoticed due to wrong tensor sizes and Python's dynamic typing...

Always verify your intermediate computations with e.g. "print(x[:5])".
Always verify your tensor shapes with "print (x.shape)”!
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Tensors

The first dimension is usually the samples ("x.shape[0]" is the batch size)
Gradients:
Tensors can have a gradient in "x.grad”.
We can remove (and clone) this tensor from the computation graph by using "y =
x.detach()".
To NumPy: "x.numpy ()" or "x.detach() .numpy()".
Debug:
Many errors can be unnoticed due to wrong tensor sizes and Python's dynamic typing...

Always verify your intermediate computations with e.g. "print(x[:5])".
Always verify your tensor shapes with "print (x.shape)”!

A A tensor of shape (5,1) is not the same a tensor of shape (5)!
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DL training pipeline

Deep learning training pipeline

Training and testing neural networks (in Pytorch)
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DL training pipeline

Typical binary classification task. Objective is to distinguish cat images from dog images.

X e R4 y € R®
| Pre- » Neural network | POSE-PIOCESSING ey (( »
« dog »
Feature extraction Maximum scoring class

Adjusting the model (optim. step)

ENSAE 2023-2024 10/54



DL training pipeline

Data loader — model creation — loss function — optimization loop
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DL training pipeline

Dataset class

torch.utils.data.Dataset is an abstract class representing a dataset. Your custom
dataset should inherit Dataset and override the following methods:

__len__ so that len(dataset) returns the size of the dataset.

__getitem__ to support the indexing such that dataset[i] gives the ith sample.

Iterating through the dataset with Dataloader
By using a simple for loop to iterate over the data, we are missing out on:
Batching the data,
Shuffling the data,
Load the data in parallel using multiprocessing workers.

torch.utils.data.Datal.oader is an iterator which provides all these features.
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DL training pipeline

Transformations
» torchvision.transforms allows to easily compose data transformations to the data.

» img_transform = transforms.Compose([transforms.CenterCrop(224),
transforms.ToTensor (),

transforms.Normalize (mean, std)])

» On most vision dataset, the transform field is applied before accessing the data.
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DL training pipeline

Transformations
torchvision.transforms allows to easily compose data transformations to the data.

img_transform = transforms.Compose([transforms.CenterCrop(224),
transforms.ToTensor (),
transforms.Normalize (mean, std)])

On most vision dataset, the transform field is applied before accessing the data.

Dataloader
To create a dataloader for the training set, use torch.utils.data.Dataloader:
loader = Dataloader(dataset, batch_size=64, shuffle=True, num_workers=6)
Includes a random mini-batch selection mechanism and parallelization.

Used as an iterator: for inputs, targets in train loader:
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DL training pipeline

Sequential neural networks and MLPs
One liner for MLPs: model = nn.Sequential (nn.Linear(2,4), nn.RelLU(),...)
More generally any sequence of already existing layers.

How to create new layers or entirely new architectures?

The Module class
All models are exentions of the nn.Module class.
Need to implement a model . forward(x) function.

Can be called as a function model (x).
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DL training pipeline

The Module class
» All models are exentions of the nn.Module class.
> Need to implement a model . forward(x) function.

» Can be called as a function model (x).
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DL training pipeline

The Module class
» All models are exentions of the nn.Module class.
> Need to implement a model . forward(x) function.

» Can be called as a function model (x).

Example (function of two variables)

class YourModel (nn.Module) :
def __init__(self):
super().__init__Q)

self.lin = nn.Linear (10, 100)

def forward(self, x, y)
x = self.lin(x)
return y + torch.exp(torch.mean(x, dim=1))
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DL training pipeline

» A function backward is automatically implemented to perform backpropagation.

ENSAE
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DL training pipeline

A function backward is automatically implemented to perform backpropagation.

By default, the parameters model .parameters () are randomly initialized.
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DL training pipeline

A function backward is automatically implemented to perform backpropagation.
By default, the parameters model .parameters () are randomly initialized.

Hierarchical structure: All layers also extend nn.Module, and any module can be used
in another module. All modules used by a model are accessible via model.children().
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DL training pipeline

Empirical risk minimization
Let (@, ¥i)ie[1,n] be a collection of n observations drawn independently according to D.
Then, the objective of empirical risk minimization (ERM) is to find a minimizer 0, € RP of

1 n
n=3'7 A
ggﬁgn; (9(xi), i)
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DL training pipeline

Empirical risk minimization
Let (@, ¥i)ie[1,n] be a collection of n observations drawn independently according to D.
Then, the objective of empirical risk minimization (ERM) is to find a minimizer 0, € RP of

1 n
n=3'7 ARy
ggign;:l (90(i), i)

Losses used for training

Regression: Mean sqaure error (MSE) ((y,y) = |ly — v'|3 = X (vi — v})?
Classification: Cross entropy (CE) ¢(y,y) = — >, ¥/ In (exp(yi)/zj exp(yj))
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DL training pipeline

Intuition: The model outputs a score for each class y; = go(z). We create a probability
exp(yi)
Zj exp(y;)
probability ¢(y,y’) = —log (px), where k € [1,C] s.t. y, = 1{i = k}.

on the classes p; = . We then take the negative logarithm of the true class's
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DL training pipeline

Intuition: The model outputs a score for each class y; = gg(z). We create a probability

on the classes p; = fii—(;’(z_). We then take the negative logarithm of the true class's
j j

probability ¢(y,y’) = —log (px), where k € [1,C] s.t. y, = 1{i = k}.
Interpretation #1: Minimizing cross entropy is equivalent to maximum likelihood
estimation for the probabilistic model of the data samples (X;,Y;) such that
logP(Y; = k | X;) o go(X;)r where X; are i.i.d. and independent of 6, as

exp(go(Xi)y;)
2 exp(g0(Xi)k)

Py((X:,Y;)) HIP’ DPe(Yi | X;) ocl_[
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DL training pipeline

Intuition: The model outputs a score for each class y; = gg(z). We create a probability
on the classes p; = ZE’:(—%. We then take the negative logarithm of the true class's
probability ¢(y,y’) = —log (px), where k € [1,C] s.t. y, = 1{i = k}.

Interpretation #1: Minimizing cross entropy is equivalent to maximum likelihood

estimation for the probabilistic model of the data samples (X;,Y;) such that
logP(Y; = k | X;) o go(X;)r where X; are i.i.d. and independent of 6, as

exp(go(Xi)y;)
2 exp(g0(Xi)k)

Py((X:,Y;)) rm ]%Y|chn
Interpretation #2: Difference between the scores of the predicted and true classes.
E@,)l%<2wp%>—%%mwm—%
(2
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DL training pipeline

exp(zy)

Definition: ¢(z,y) = —log (W)
PyTorch: criterion = nn.CrossEntropyLoss()
Several parameters (reduction=’sum’ or reduction=’mean’, see the doc)

criterion takes as input the scores (a tensor of shape [b,d]), and either a class index
per sample, or class probabilities for each sample.

Composition of nn.LogSoftmax () and nn.NLLLoss ().

Gradient through a softmax can explode due to numerical errors (taken care of by
the Pytorch implementation of nn.CrossEntropyLoss () and nn.LogSoftmax()).
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First-order optimization

First-order optimization

Gradient descent and co.
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First-order optimization

Find a minimizer 6* € R? of a given objective function £ : R — R,

0* € argmin £(6)
HeRd

Using an iterative algorithm relying on the gradient VL(6;) at each iteration t > 0.

7
Starting Point 7 A

source: https://distill.pub/2017/momentum/
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First-order optimization

Iterative optimization algorithms
Initialization: 6, € R? (important in practice!).

Iteration: Usually 0,11 = ¢, (0, VL(0;), s;) where s; is a hidden variable that is also
updated at each iteration.

Stopping time: 7' > 0 (also important in practice!).
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First-order optimization

Iterative optimization algorithms
Initialization: 6, € R? (important in practice!).

Iteration: Usually 0,11 = ¢, (0, VL(0;), s;) where s; is a hidden variable that is also
updated at each iteration.

Stopping time: 7' > 0 (also important in practice!).

Main difficulties in neural network training
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First-order optimization

Iterative optimization algorithms
Initialization: 6, € R? (important in practice!).

Iteration: Usually 0,11 = ¢, (0, VL(0;), s;) where s; is a hidden variable that is also
updated at each iteration.

Stopping time: 7' > 0 (also important in practice!).

Main difficulties in neural network training

Non-convexity: If £ is convex, i.e. VG,G’,E((’*TG') < w, the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.
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First-order optimization

Iterative optimization algorithms
Initialization: 6, € R? (important in practice!).

Iteration: Usually 0,11 = ¢, (0, VL(0;), s;) where s; is a hidden variable that is also
updated at each iteration.

Stopping time: 7' > 0 (also important in practice!).

Main difficulties in neural network training

Non-convexity: If £ is convex, i.e. VG,G’,E((’*TG') < w, the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.

High dimensionality: number of parameters d » 1000.
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First-order optimization

Iterative optimization algorithms
Initialization: 6, € R? (important in practice!).

Iteration: Usually 0,11 = ¢, (0, VL(0;), s;) where s; is a hidden variable that is also
updated at each iteration.

Stopping time: 7' > 0 (also important in practice!).

Main difficulties in neural network training
Non-convexity: If £ is convex, i.e. VG,G’,E((’*TG') < w, the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.
High dimensionality: number of parameters d » 1000.

Access to the gradient: the gradient of £ is too expensive to compute! In practice,
VL(6;) is replaced by a stochastic or mini-batch approximation V.
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First-order optimization

Let £;(0) = ¢(go(z;i),yi). Recall empirical risk minimization, aka training error:

min ! Z L;(6)
i=1

R4 N
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First-order optimization

Let £;(0) = ¢(go(z;i),yi). Recall empirical risk minimization, aka training error:

min ! Z L;(6)
i=1

R4 N

Batch gradient descent: uses the true gradient, learning rate (or step-size) n > 0,

1 =0 — 1 >, VL(6)
i=1
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First-order optimization

Let £;(0) = ¢(go(x;), yi). Recall empirical risk minimization, aka training error:

min ! Z L;(6)
i=1

R4 N

Batch gradient descent: uses the true gradient, learning rate (or step-size) n > 0,
n
n
Opy1 = 0; — o Z;Vﬁi(g)
1=

Stochastic gradient descent: gradient approximated with one random sample.
Ory1 = 0y — NV L;,(0)
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First-order optimization

Let £;(0) = ¢(go(x;), yi). Recall empirical risk minimization, aka training error:

min ! Z L;(6)
i=1

O0eRd M
Batch gradient descent: uses the true gradient, learning rate (or step-size) n > 0,
n
n
Opy1 = 0; — o Z VL;(0)
=1
Stochastic gradient descent: gradient approximated with one random sample.

Orp1 = 0 — UVﬁz’t (‘9)

Mini-batch gradient descent: gradient approximated with multiple random samples.

b
O = 0 — 2 Y, VLs, (6)
i=1
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First-order optimization

A Our final goal is to reduce the population risk, i.e. E(¢(go(X),Y))!

We need to pay attention to overfitting in addition to using the optimization algorithm
to reduce the training error.

In this class, we focus specifically on the performance of the optimization algorithm in
minimizing the objective function, rather than the model's generalization error.

In the next lessons, we will see techniques to avoid overfitting.
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First-order optimization

Mini-batch gradient descent is the algorithm of choice when training a neural network.
The term SGD is usually employed also when mini-batches are used!
Choosing a learning rate can be difficult. How to adapt the learning rate during training?
Why applying the same learning rate to all parameter updates?
How to escape saddle points where the gradient is close to zero in all dimension?
In the rest of the lecture, we will introduce modifications to (S)GD.

Nice survey by Sebastian Ruder: http://ruder.io/optimizing-gradient-descent/

source: Visualizing the Loss Landscape of Neural Nets, Li et.al., 2018
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First-order optimization

Accelerating SGD by dampening oscillations, i.e. by averaging the last values of the latest
gradients.
Vi1 = YUt + nVE(@t)

Or41 = 0 — V41
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First-order optimization

Accelerating SGD by dampening oscillations, i.e. by averaging the last values of the latest

gradients.
Vi1 = YUt + nVE(@t)

Orr1 = 0t — v41
Why does it work? With g; = VL(6;), we have for any k > 0:

k

ver1 = Vg + 1) Z V' G—i
=0

N

average of last gradients

Typical value for v = 0.9.

ENSAE 2023-2024 26/54



First-order optimization

We would like to adapt our updates to each individual parameter, i.e. have a different
decreasing learning rate for each parameter.
= St,i + Vﬁ(et)g

T v

Ori1, = 01 — ————
V/St+1,i T €

St+1,i
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First-order optimization

We would like to adapt our updates to each individual parameter, i.e. have a different
decreasing learning rate for each parameter.

St+14 = Sti + Vﬁ(et)?

Ori1,i = O — 7

, mvﬂﬂ)i

No manual tuning of the learning rate.
Typical default values: 17 = 0.01 and ¢ = 1078.

source: Duchi et al., Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, JMLR 2011
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First-order optimization

Problem with Adagrad, learning rate goes to zero and never forgets about the past.
Idea proposed by G. Hinton in his Coursera class: use exponential average.

st41,i = V5ti + (1 — 7)VL(0,)?

Otv1, = Ori — \/%Vﬁ(et)i
)i
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First-order optimization

Problem with Adagrad, learning rate goes to zero and never forgets about the past.
Idea proposed by G. Hinton in his Coursera class: use exponential average.

St41,4 = VSti + (1=7)V E(Ht)?

n
Qi1 i =0, ——1 L6,
t+1,0 tyae 3t+1,z’ 6 ( t)z

With a slight abuse of notation, we re-write the update as follows:

St+1 = VSt + (1 — ’}’)V,C(et)2

a9 7
Orp1 =04 —WV£(90

Typical values: v = 0.9 and n = 0.001.

source: Hinton Coursera lecture 6
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First-order optimization

Mixing RMSProp and momentum, we get Adam = Adaptive moment Estimation.
myr1 = Bime + (1 — B1)VL(O)
vis1 = Bavr + (1 — o) VL(0)?

A Mg

M+l = - 1
-0
. _ Ui

Virl = 7t
1 =5

n N
Opr1 =0 — —F——1u1
Vgy1 + €

m; and 0; are estimates for the first and second moments of the gradients. Because

mo = vg = 0, these estimates are biased towards 0, the factors (1 — 5t*1)~! are here to
counteract these biases.

Typical values: 31 = 0.9, B2 = 0.999 and € = 1078.

source: Kingma et al. , Adam: a Method for Stochastic Optimization, ICLR 2015
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First-order optimization

All have similar constructor torch.optim.*(params, lr=..., momentum=...).
Default values are different for all optimizers, check the doc.

params should be an iterable (like a list) containing the parameters to optimize over. It
can be obtained from any module with module.parameters().

The step method updates the internal state of the optimizer according to the grad
attributes of the params, and updates the latter according to the internal state.
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First-order optimization

Training over one epoch becomes:

model = YourModel ()

train_loader = Dataloader(train_dataset, batch_size=64, shuffle=True)
criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

for inputs, targets in train_loader:
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward ()
optimizer.step()
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First-order optimization

Faster parallel computations with GPUs
To know if you have access to GPUs:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print (°Using gpu: %s ’ % torch.cuda.is_available())

Tensors are allocated on a device using: x.to(device).

Testing, metrics and more
We need to create a test set separate from the training set to evaluate the model.
We need to store all loss values and accuracies after each epoch.
Set the model to model.train() or model.eval ().

Perform multiple epochs.
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First-order optimization

The training pipeline becomes: (dataloader — model — loss — optimizer — visualization)

model.to(device)
model.train()
for epoch in range(num_epochs):
running_loss = 0.
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model (inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward ()
optimizer.step()
running_loss += loss.item()
print (f"Epoch {epoch}: Loss: {running loss/n_data:.2f}")
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First-order optimization

Test should not compute gradients, hence torch.no grad().

model.to(device)
model.eval()
running_loss, running acc = 0., O
with torch.no_grad():
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
output = model(inputs)
loss = criterion(outputs, targets)
preds = torch.argmax(outputs,1)
running_loss += loss.item()
running_acc += torch.sum(preds == targets)
print(f"Loss: {running loss/n_data:.2f} Acc: {running acc/n_data:.2f}")
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Image analysis

Image analysis

Introduction to convolutional neural networks

ENSAE




Image analysis

Object recognition challenge, from 2010 to 2017.
1.2 million images (avg. 469x387), 1000 object classes.

source: ImageNet Large Scale Visual Recognition Challenge. Russakovsky et.al., 2015.
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Image analysis

Performance of classification methods (top-5 accuracy)
> Random strategy: 0.5%.
> Human performance: Expert 1: 94.9%. Expert 2: 88%.
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Image analysis

Performance of classification methods (top-5 accuracy)
Random strategy: 0.5%.
Human performance: Expert 1: 94.9%. Expert 2: 88%.
Before 2012: Feature extraction 4+ SVMs, 74.2%.
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Image analysis

Performance of classification methods (top-5 accuracy)
Random strategy: 0.5%.
Human performance: Expert 1: 94.9%. Expert 2: 88%.
Before 2012: Feature extraction 4+ SVMs, 74.2%.
Winners of 2012: CNN (AlexNet) 84.7%.
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Image analysis

Performance of classification methods (top-5 accuracy)

Random strategy: 0.5%.

Human performance: Expert 1: 94.9%. Expert 2: 88%.
Before 2012: Feature extraction 4+ SVMs, 74.2%.
Winners of 2012: CNN (AlexNet) 84.7%.

After 2012: Always DL architectures, current best ~ 99%.

Current leaderboard: https: //paperswithcode. com/sota/image-classification-on-imagenet
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Image analysis

« round »

« fluffy »

« flat »

We want to find sharp edges, round eyes, fur-like textures...
How can we encode these local characteristics?

How can we ensure translation invariance?
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Image analysis
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source: ImageNet Classification with Deep Convolutional Neural Networks. Krizhevsky et.al., 2012.

First idea introduced by Fukushima in 1980.
Linear layers in MLPs are replaced by convolution and pooling layers.

Higher-level structures are extracted via a hierarchical information processing.
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Image analysis

Input vector: 1 0| -4 3 1 0 6
Filter: -1 1 2
Output vector: 9
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Filter: -1 1 2
Output vector: 9 2
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Image analysis

Input vector: 1 0| -4 3 1 0 6
Filter: -1 1 2
Output vector: 9 2 9
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Image analysis

Input vector: 1 0| -4 3 1 0 6
Filter: -1 1 2
Output vector: 9 2 9 -2
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Image analysis

Input vector: 1 0| -4 3 1 0 6
Filter: -1 1 2
Output vector: 9 2 9 -2 |11
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Image analysis

Input vector: 1 0| -4 3 1 0 6
Filter: -1 1 2
Output vector: 9 2 9 -2 |11

Continuous setting: (f * g)(u) = {7 _ f(v) g(u —v) dv

v=—00
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Image analysis

Input vector: 1 0| -4 3 1 0 6
Filter: -1 1 2
Output vector: 9 2 9 -2 |11

Continuous setting: (f * g)(u) = {7 _ f(v) g(u —v) dv

v=—00
Discrete version: (z *y); = Z;n=1 Tj Yi—j[n]
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Image analysis

Input vector: 1 0| -4 3 1 0 6
Filter: -1 1 2
Output vector: 9 2 9 -2 |11

Continuous setting: (f = g)(u) = S:f_oo f(w)g(u—v)dv

Discrete version: (z *y); = Z;ﬂzl T Yi—j[n]

Pytorch implementation: (z *y); = >, ; yi+; (technically, a cross-correlation)
Key properties: Local operation, limited receptive field, translation equivariant.
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Image analysis

source: https: // github. com/vdumoulin/ conv_ arithmetic/blob/master/README. md

Technical details
Receptive field: shape of the filter (typically 3x3).
Padding: Adding a boundary of K > 0 layers of zeros (increases output image size).
Stride: do the computation for one pixel every K > 0 (decreases output image size).

See in action: https://setosa.io/ev/image-kernels/
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Image analysis

Conv. Iayer Conv. Iayer

3 channels (R,G,B) 5 channels 2 channels

Idea: Allows to store multiple local information (e.g. vertical /horizontal edges, corners,...)

Definition: Dense connections between channels, i.e. for each output channel &,
Y = >y Wiy * x; + by, where Wy, ; is the filter for input channel [ and output channel k.

Rule of thumb: number of channels increases while image size decreases.
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Image analysis

source: https: //github. com/vdumoulin/ conv_ arithmetic/blob/master/README. md

Main idea: Aggregate local information to reduce complexity.
Example: Is there an edge in this region of the image?
No parameters: Applies a simple function to local image patches.

Two major variants: AvgPool (mean over values) or MaxPool (max over values).

ENSAE 2023-2024 43/54


https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

Image analysis
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source: https: // github. com/vdumoulin/ conv_ arithmetic/blob/master/README. md

Features: 13 layers of convolution and 5 layers of padding

Classifier: Last layers are an MLP with 3 linear layers.

First layers encode low-level information (e.g. edges or circles).

Last layers encode high-level information. (e.g. "fluffiness” or "eye-shaped elements”)
See in action: https://distill.pub/2017/feature-visualization/
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Image analysis

& @ Q.
E < o(x) < o) -
£ &F o o 3
N N
Affine layer Activation Affine layer Activation Affine layer

Idea: why not take an MLP and make it translation invariant?
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Image analysis

& @ Q.
E < o(x) < o) -
£ &F o o 3
N N
Affine layer Activation Affine layer Activation Affine layer

Idea: why not take an MLP and make it translation invariant?
Equivariance: a function f is equivariant w.r.t. to a transformation 7 iff f o7 =710 f.
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Image analysis

& @ Q.
E < o(x) < o) -
5 &F o o 3
N N
Affine layer Activation Affine layer Activation Affine layer

Idea: why not take an MLP and make it translation invariant?

Equivariance: a function f is equivariant w.r.t. to a transformation 7 iff f o7 =710 f.
Translations (circular): For any u € [1, N] and input 2 € RY, let 7,(z); = Tiu[N]-
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)
2

& =
E x @ x @ -
=% a(x a(x =
5 &F o o 3
N N
Affine layer Activation Affine layer Activation Affine layer

Idea: why not take an MLP and make it translation invariant?

Equivariance: a function f is equivariant w.r.t. to a transformation 7 iff f o7 =710 f.
Translations (circular): For any u € [1, N] and input 2 € RY, let 7,(z); = Tiu[N]-

Lemma (convolutions)

The only linear functions that are translation equivariant are the convolutions.
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Image analysis

& @ &
E < o(x) < o(x) -
= o
N N
Affine layer Activation Affine layer Activation Affine layer

Idea: why not take an MLP and make it translation invariant?

Equivariance: a function f is equivariant w.r.t. to a transformation 7 iff for =70 f
Translations (circular): For any u € [1, N] and input 2 € RY, let 7,(z); = Tiu[N]-

Lemma (convolutions)

The only linear functions that are translation equivariant are the convolutions.
Proof.
By linearity, we have f(z); = >}; M; ;x;.

Then, we have Zj M i Ny = Zj M;uny, ;7 and Vi, j,u, Mi; = M o[N]j+uN]-
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The ResNet architecture

Creating deeper neural networks
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ResNet

56-layer
56-layer

20-layer

Training error
Test error

20-layer

. I .
lterations lterations

Some properties require a large number of simple operations.
Limitations of VGG: can’t add too many layers (due to vanishing gradients).
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weight layer

Fx) .
identity
F(x) +x @

Figure 2. Residual learning: a building block.

Idea: only encode the residual: () = () 4 gg(x(l)) where gy is a computation block.

Impact: Increases stability (gradients closer to 1, mapping closer to identity).

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.
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ResNet

34-layer residual
image
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source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

ENSAE 49/54



» Even deeper ResNet models are possible: 34, 50, 101, and 152 layers!
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Even deeper ResNet models are possible: 34, 50, 101, and 152 layers!

ResNet50 compared to VGG
Accuracy: Superior in all vision tasks: 5.25% top-5 error vs 7.1%
Less parameters: 25M vs 138M
Computational complexity: 3.8B Flops vs 15.3B Flops
Fully Convolutional until the last layer
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AN 18-layer
U
18-layer

~~ResNet-18 AP APANANAp A
—ResNet-34 34-layer
20 30 40 50 0 10
iter. (le4)

30 40 50
iter. (led)
Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain

networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.
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ResNet

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The vertical axis is
logarithmic to show dynamic range. The proposed filter normalization scheme is used to enable
comparisons of sharpness/flatness between the two figures.

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.
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method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

source: K. He et al., Deep residual learning for image recognition, CVPR 2016.

ENSAE 2023-2024 53/54



CNN = convolutions + pooling (+ activations + BatchNorm)
Convolutions are (the only) local, translation equivariant linear mappings.
First layers extract low-level local features of the image.

Last layers extract high-level global features of the image.

Receptive field of neurons increases as we move towards the output.
Residuals improve stability and performance for very deep CNNs.

ENSAE 2023-2024 54/54



	Practical details
	

	Tensors
	

	DL training pipeline
	

	First-order optimization
	

	Image analysis
	

	ResNet
	


