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Practical details

Class overview

Lessons

1. Introduction, simple architectures (MLPs) and autodiff 09/02

2. Training pipeline, optimization and image analysis (CNNs) 16/02

3. Sequence regression (RNNs), stability and robustness 08/03

4. Generative models in vision and text (Transformers, GANs) 15/03
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Recurrent Neural Networks

Sequence prediction and classification

Text sequences

§ Text auto-completion

§ Sentiment analysis

Audio sequences

§ Speech to text

§ Music generation

Time-series forecasting

§ Market price prediction

§ Weather forecast
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Recurrent Neural Networks

Standard approaches

Data: Sequences of the form px1, . . . , xtq. Objective: guess next iterate xt`1.

Classical ML models
§ Hidden Markov Models: Probabilistic model where current value is drawn according to
a distribution dependent on a hidden state.

§ Auto-regressive models: Linear relationship between current and previous iterates.

Convolutional Neural Networks
§ We can integrate the temporal dimension with a 1d convolution.

§ Standard architecture: WaveNet (Van den Oord et al., 2016)

Transformers
§ Based on a selection procedure using attention modules (see in next class).

§ Current state-of-the-art for natural language processing.
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Recurrent Neural Networks

Recurrent Neural Networks

§ Several variants

source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Recurrent Neural Networks

Recurrent Neural Networks

§ Today

source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Recurrent Neural Networks

Recurrent Neural Networks

Causality & short-term dependency

We process a sequence of vectors xt by applying a recurrence formula at every time step:

ht “ fW pht´1, xtq

§ ht´1 = previous state, ht = current state

§ fW = some function with parameters W

§ xt = input column vector at time step t

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recurrent Neural Networks

Recurrent Neural Networks

Usual implementation

§ Typically (note the use of the tanh non-linearity):

ht “ tanhpWhh ht´1 ` Wxh xtq

§ Output: yt “ Why ht or yt “ softmaxpWhy htq

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recurrent Neural Networks

RNN computational graphs

Backpropagation through time

source: J. Johnson
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Recurrent Neural Networks

A simple binary sequence classification problem

§ Can you guess the task?
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Recurrent Neural Networks

A simple binary sequence classification problem

§ Can you guess the task?

§ How would you solve this task?
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Recurrent Neural Networks

A (less) simple binary sequence classification problem

§ We will make it a bit more complicated with colored parenthesis, example with 10 colors.

§ Rule: Opening parenthesis i P r0, 4s with corresponding closing parenthesis j P r5, 9s such
that i ` j “ 9.

§ How would you solve this task?
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Recurrent Neural Networks

Elman network (1990)

First implementation of RNNs, simple ReLU activation and linear output.

§ Initial hidden state: h0 “ 0

§ Update: ht “ ReLUpWxh xt ` Whh ht´1 ` bhq

§ Final prediction: yT “ Why hT ` by
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Recurrent Neural Networks

Training

§ We encode the symbol at time t as a one-hot vector xt
§ To simplify the processing of variable-length sequences, we are processing samples (i.e.
sequences) one at a time. We do not consider batches.
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Recurrent Neural Networks

Results

§ Loss decreases and fraction of correct classification increases but did our network learn?
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Recurrent Neural Networks

Gating

Main idea
§ Gates are a way to optionally let information through.

§ The sigmoid layer outputs numbers between zero and one, describing how much of each
component should be let through. A value of zero means “let nothing through,” while a
value of one means “let everything through!”.

§ Recurrence relation: ht “ ReLUpWxhxt ` Whhht´1 ` bhq

§ Forget gate: zt “ sigmpWxzxt ` Whzht´1 ` bzq

§ Hidden state: ht “ zt d ht´1 ` p1 ´ ztq d ht
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Recurrent Neural Networks

Gated RNN
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Recurrent Neural Networks

Results

§ Orange = previous RNN.

§ Blue = Gated RNN.

§ Is there a benefit with gating?
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Recurrent Neural Networks

LSTM, GRU and multi-layer RNNs

§ More parameters than Elman networks (simple RNN).

§ Mitigates vanishing gradient problem through gating.

§ Widely used and SOTA in many sequence learning problems.
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Recurrent Neural Networks

GRU: Gated Recurrent Unit (Cho et al., 2014)

§ Recurrence relation: ht “ tanhpWxh xt ` Whh prt d ht´1q ` bhq

§ Forget gate: zt “ sigmpWxzxt ` Whzht´1 ` bzq

§ Reset gate: rt “ sigmpWxr xt ` Whr ht´1 ` brq

§ Hidden state: ht “ zt d ht´1 ` p1 ´ ztq d ht

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recurrent Neural Networks

LSTM: Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ENSAE 2023-2024 21/49

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent Neural Networks

Inside LSTMs

§ Cell state

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recurrent Neural Networks

Inside LSTMs

§ Forget gate layer

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recurrent Neural Networks

Inside LSTMs

§ Input gate layer

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recurrent Neural Networks

Inside LSTMs

§ Update cell state

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recurrent Neural Networks

Inside LSTMs

§ Output gate

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recurrent Neural Networks

LSTMs in PyTorch

Note: the prediction is done from the hidden state, hence also called the output state.
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Recurrent Neural Networks

Results

§ Green = Elman RNN.

§ Orange = Gated RNN.

§ Blue = LSTM.

§ Is there a benefit with LSTM?
ENSAE 2023-2024 28/49



Recurrent Neural Networks

Common wisdom in 2015

§ Josefowicz et al. (2015) conducted an extensive exploration of different recurrent
architectures, they wrote:

”We have evaluated a variety of recurrent neural network architectures in order to find
an architecture that reliably outperforms the LSTM. Though there were architectures
that outperformed the LSTM on some problems, we were unable to find an ar-
chitecture that consistently beat the LSTM and the GRU in all experimental
conditions.”

§ Now let see if the LSTM is performing better on our task of checking for balanced
parentheses!
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Stability during training

Stability during training
Weights initialization, gradient vanishing and explosion

ENSAE 2023-2024 30/49



Stability during training

Stability during training

Example with simple RNNs (Elman networks, no gating mechanisms)

§ The gradients are sometimes very large.

§ This leads to a large drop in accuracy.

§ Results are quite random, final performance depends on initialization.
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Stability during training

Gradient vanishing and explosion

Breaking gradient descent

§ If θt are the iterates of the parameters learned using stochastic gradient descent on
minibatches pxt,i, yt,iqiPJ1,KK at time t, then we have

θt`1 “ θt ´
η

K

ÿ

i

∇Lxt,i,yt,ipθq ,

where Lx,ypθq “ ℓpgθpxq, yq.

§ Gradient vanishing: When the gradients ∇Lxt,i,yt,ipθq are very small compared to θt,
the iteration does not modify the parameters.

§ Gradient explosion: When the gradients ∇Lxt,i,yt,ipθq are very large compared to θt, the
iteration will push the parameters to extreme values.
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Stability during training

Gradient vanishing and explosion

Why is it a problem for deep learning?

§ By chain rule, the gradient tends to multiply along the layers.

§ Example: If gpLqpxq “ f pLq ˝ f pL´1q ˝ ¨ ¨ ¨ ˝ f p1qpxq where f pLq : R Ñ R, then

gpLq1
pxq “

L
ź

l“1

f plq1
pgpl´1qpxqq

§ If f plq1
pgpl´1qpxqq « c, then gpLq1

pxq « cL.

§ Exponentially small w.r.t. L if c ă 1 (gradient vanishing).

§ Exponentially large w.r.t. L if c ą 1 (gradient explosion).
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Stability during training

Mitigation techniques: how to avoid this?

Gradient clipping

§ torch.nn.utils.clip grad norm (model.parameters(), threshold)

§ Pros: Easiest method, just limits the gradient norm to a fixed value.

§ Cons: Only for gradient explosion, adds an extra hyper-parameter.

Architecture changes

§ Gates in RNNs, residuals in CNNs, dropout, batch normalization, ...

§ Pros: More principled, usually leads to better performance.

§ Cons: Requires to change the network architecture, application dependent.

Weight initialization

§ Automatically implemented, but can have an large impact on performance
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Stability during training

Weights initialization

Ideal initialization scheme
§ The better the model is at initialization, the more changes we have of find good weights.

§ We would like to have values that are reasonable, @i P J1, dpLqK, |gθpxqi| « 1.

§ We would like to have gradients that are neither too large nor too small

@i P J1, pK, |∇Lx,ypθqi| « 1

Simple solution

§ Set bplq “ 0 and sample the weights W
plq
ij „ P i.i.d. with expectation 0 and variance V plq.

§ Choose V plq so that the variance is constant across layers.
§ Technical assumptions:

§ The probability distribution is symmetric w.r.t. 0 and Ppt0uq “ 0.
§ The activation function is ReLU σpxq “ maxt0, xu.
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Stability during training

Derivation of optimal weight variance

Preliminary results

§ Let x P Rdp0q

a fixed input and, @l P J1, LK, Xplq “ g
p2l´1q

θ pxq.

§ For any l P J1, LK, the variables pX
plq
i qiPJ1,dp2l´1qK are identically distributed.

§ The distribution of X
plq
i is symmetric w.r.t. 0 (and thus EpX

plq
j q “ 0).

Proof.
§ The proof follows a simple recurrence:

§ Initialization: X
p1q

i “
ř

j W
p1q

ij xj is identically distributed and symmetric.

§ If the properties are verified for l, then X
plq
i “

ř

j W
plq
ij σpX

pl´1q

j q, which is identically
distributed and symmetric.
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Stability during training

Variance of the output value

Variance of the intermediate outputs

§ For any l P J2, LK and i P J1, dp2l´1qK, we have

varpX
plq
i q “ varp

ř

j W
plq
ij σpX

pl´1q

j qq

“
ř

j varpW
plq
ij σpX

pl´1q

j qq

“ dpl´1q varpW
plq
ij qEpσpX

pl´1q

j q2q

“ dpl´1q V plq EpX
pl´1q

j

2
1tX

pl´1q

j ą 0uq

“ dpl´1q V plq varpX
pl´1q

j q{2

§ Hence, the variance is constant across layers if V plq “ 2{dpl´1q, and

varpgθpxqiq “ 2}x}22{dp0q
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Stability during training

Kaiming initialization (Kaiming He et.al., 2015)

Gaussian weights

Our assumptions are satisfied if we use Gaussian weights W
plq
ij „ N

´

0, 2
dpl´1q

¯

.

Uniform weights

If we take uniform weights W
plq
ij „ Upr´rplq, rplqsq, then V plq “ r2{3 and

rplq “

c

6

dpl´1q
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Stability during training

Variance of the gradient

Variance propagation during backprop

§ Same analysis for backprop, but in reverse.

§ This gives an optimal variance V plq “ 2{dplq.

§ In order to have both the variances of gradients and of values constant, we thus need
V plq “ 2{dplq and V plq “ 2{dpl´1q...

§ A reasonable heuristic consists in taking the average: V plq “ 4
dplq`dpl´1q .

Xavier initialization (Xavier Glorot & Yoshua Bengio, 2010)

Let c ą 0 be a hyper-parameter. The weights are initialized using the heuristic

W
plq
ij „ Upr´rplq, rplqsq and rplq “

d

6c2

dplq ` dpl´1q

Impact of initialization in practice: https://www.deeplearning.ai/ai-notes/initialization/index.html
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Stability during training

Batch normalization

Idea
§ Normalize the input of each layer by removing mean and dividing by std.

§ Also uses a learnable affine map.

Definition
§ If pxiqi is a batch of b inputs (to the layer), then the output is:

yi “
xi ´ E
?
V ` ε

¨ γ ` β

where E “ 1
b

ř

i xi and V “ 1
b

ř

ipxi ´ Eq2 (coord.-wise), γ and β are learnable vectors.
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Stability during training

Batch normalization

The output depends on the whole batch, not just single inputs!

Train and eval
§ The behavior of batch norm is different between training and evaluation (e.g.
model.train() and model.eval() in Pytorch).

§ At evaluation, the model uses a (moving) average of all training batches.

§ Stores E and V for each training batch, and then computes

p1 ´ ρq
ÿ

t

ρtEt and p1 ´ ρq
ÿ

t

ρtVt

where (typically) ρ “ 0.9.
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Stability during training

Recap

§ Gradient vanishing and explosion can happen during training of deep NNs.

§ Gradient clipping, batch normalization, regularisation and proper weight
initialization can help stabilize training.

§ The variance of the weights at initialization should be inversely proportional to the
layer width.
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Robustness and adversarial attacks

Robustness and adversarial attacks
Confusing a neural network with noise
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Robustness and adversarial attacks

Adversarial attacks

§ Can a small (invisible) noise change the prediction of a vision model?
§ Vision models are robust to random input noise.
§ Vision models are extremely fragile to well-crafted input noise.

source: Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015.
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§ Vision models are extremely fragile to well-crafted input noise.

source: Robust Physical-World Attacks on Deep Learning Visual Classification, Eykholt et al, CVPR 2018.
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Robustness and adversarial attacks

Adversarial attacks

§ Can a small (invisible) noise change the prediction of a vision model?
§ Vision models are robust to random input noise.
§ Vision models are extremely fragile to well-crafted input noise.

source: Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, Sharif et.al., CCS 2016.
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Robustness and adversarial attacks

Adversarial attacks: examples

Fast gradient sign method (Goodfellow et.al., 2014)

§ Idea: Take one gradient step in the direction that maximizes the loss.

§ To control the maximum pixel noise, use the coordinates’ sign instead of value.

§ Limitations: Destroys performance, but cannot target a specific class.

xatt “ xtrue ` ε signp∇xLpθ, xtrue, ytrueqq

Iterative Target Class Method (Kurakin et.al., 2016)

§ Idea: Perform gradient descent on the loss with labels swaped.

§ To control the maximum pixel noise, project on a ball of radius ε around x.

§ Limitations: Requires to know the model weights (white box setting).

xatt
k`1 “ Clampxtrue,ε pxatt

k ` ε signp∇xLpθ, xatt
k , yattqqq
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Robustness and adversarial attacks

Beyond the white box setting

White-box attacks
§ Use the knowledge of the model to create the perturbation.

§ Gradient descent on a modified objective (classes swapped).

Black-box attacks
§ Attacks without access the parameters of the model.

§ Use a similar model, usually works relatively well.

Defenses
§ Augment the dataset with adversarial attacks (brute-force).

§ Control the smoothness of the model (see next).
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Robustness and adversarial attacks

Robustness of neural networks

What makes a model robust?
§ Vital for practical applications in engineering or medicine.

§ If black-box, then trusting the model requires hard constraints.

§ Small input perturbation leads to small output perturbation.

Lipschitz continuity

§ First order approximation: gθpx ` εq ´ gθpxq “ Jg,xpx, θqε ` op}ε}q.

§ Control on }Jgθpxq}2 “ maxu‰0
}Jgθ pxqu}2

}u}2
(operator norm) leads to robustness.

§ Lipschitz constant: Lgθ “ supx }Jgθpxq}2.

§ For piece-wise linear interpolation, Lipschitz constant is smaller than target function.

§ For neural networks: Lgθ ď
ś

l Lf plq ... can be exponential in number of layers!
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