Deep Learning Sequence regression (RNNs), stability and robustness

Lessons: **Kevin Scaman** TPs: Paul Lerner

Class overview

Lessons

- 1. Introduction, simple architectures (MLPs) and autodiff
- 2. Training pipeline, optimization and image analysis (CNNs)
- 3. Sequence regression (RNNs), stability and robustness
- 4. Generative models in vision and text (Transformers, GANs)

09/02 16/02 08/03 15/03

Sequence prediction and classification

Text sequences

- Text auto-completion
- Sentiment analysis

Audio sequences

- Speech to text
- Music generation

Time-series forecasting

- Market price prediction
- Weather forecast

Data: Sequences of the form (x_1, \ldots, x_t) . **Objective:** guess next iterate x_{t+1} .

Data: Sequences of the form (x_1, \ldots, x_t) . **Objective:** guess next iterate x_{t+1} .

Classical ML models

- Hidden Markov Models: Probabilistic model where current value is drawn according to a distribution dependent on a hidden state.
- Auto-regressive models: Linear relationship between current and previous iterates.

Data: Sequences of the form (x_1, \ldots, x_t) . **Objective:** guess next iterate x_{t+1} .

Classical ML models

- Hidden Markov Models: Probabilistic model where current value is drawn according to a distribution dependent on a hidden state.
- Auto-regressive models: Linear relationship between current and previous iterates.

Convolutional Neural Networks

- We can integrate the temporal dimension with a **1d convolution**.
- Standard architecture: WaveNet (Van den Oord et al., 2016)

Data: Sequences of the form (x_1, \ldots, x_t) . **Objective:** guess next iterate x_{t+1} .

Classical ML models

- Hidden Markov Models: Probabilistic model where current value is drawn according to a distribution dependent on a hidden state.
- Auto-regressive models: Linear relationship between current and previous iterates.

Convolutional Neural Networks

- We can integrate the temporal dimension with a **1d convolution**.
- Standard architecture: **WaveNet** (Van den Oord et al., 2016)

Transformers

- Based on a selection procedure using **attention** modules (see in next class).
- Current **state-of-the-art** for natural language processing.

Recurrent Neural Networks

Several variants

source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

6 W		
ΔV.	А	1 #

Recurrent Neural Networks

Today

source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

	1		
a.,		7 ann 1	

Recurrent Neural Networks

Causality & short-term dependency

We process a sequence of vectors x_t by applying a **recurrence formula** at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

- ▶ h_{t-1} = previous state, h_t = current state
- f_W = some function with parameters W
- $x_t = \text{input column vector at time step } t$

Recurrent Neural Networks

Usual implementation

Typically (note the use of the tanh non-linearity):

 $h_t = \tanh(W_{hh} h_{t-1} + W_{xh} x_t)$

• Output:
$$y_t = W_{hy} h_t$$
 or $y_t = \operatorname{softmax}(W_{hy} h_t)$

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ENSAE

Backpropagation through time

source: J. Johnson

A simple binary sequence classification problem

Can you guess the task?

Sequence	Class
[1, 1, -1, -1, 1, -1]	1
[1, -1, 1, -1]	1
[1, -1, 1, 1, -1, 1, -1, -1]	1
[1, 1, -1, -1, -1, 1, -1, 1]	0
[1, -1, -1, 1, 1, -1]	0
[1, -1, -1, 1]	0

A simple binary sequence classification problem

Can you guess the task?

Sequence	Class
[1, 1, -1, -1, 1, -1] = (())()	1
[1, -1, 1, -1] = ()()	1
[1, -1, 1, 1, -1, 1, -1, -1] = ()(()())	1
[1, 1, -1, -1, -1, 1, -1, 1] = (()))()(0
[1, -1, -1, 1, 1, -1] = ())(()	0
[1, -1, -1, 1] = ())(0

A simple binary sequence classification problem

Can you guess the task?

Sequence	Class
[1, 1, -1, -1, 1, -1] = (())()	1
[1, -1, 1, -1] = ()()	1
[1, -1, 1, 1, -1, 1, -1, -1] = ()(()())	1
[1, 1, -1, -1, -1, 1, -1, 1] = (()))()(0
[1, -1, -1, 1, 1, -1] = ())(()	0
[1, -1, -1, 1] = ())(0

How would you solve this task?

A (less) simple binary sequence classification problem

- We will make it a bit more complicated with **colored parenthesis**, example with 10 colors.
- ▶ **Rule:** Opening parenthesis $i \in [0, 4]$ with corresponding closing parenthesis $j \in [5, 9]$ such that i + j = 9.

Sequence	Class
[2, 0, 9, 7, 0, 9] = (())()	1
[1, 8, 3, 6] = ()()	1
[0, 9, 2, 4, 5, 2, 7, 7] = ()(()())	1
[0, 2, 7, 9, 7, 2, 7, 3] = (()))()(0
[1, 8, 9, 0, 1, 9] = ())(()	0
[1, 8, 7, 1] = ())(0

A (less) simple binary sequence classification problem

- We will make it a bit more complicated with **colored parenthesis**, example with 10 colors.
- ▶ **Rule:** Opening parenthesis $i \in [0, 4]$ with corresponding closing parenthesis $j \in [5, 9]$ such that i + j = 9.

Sequence	Class
[2, 0, 9, 7, 0, 9] = (())()	1
[1, 8, 3, 6] = ()()	1
[0, 9, 2, 4, 5, 2, 7, 7] = ()(()())	1
[0, 2, 7, 9, 7, 2, 7, 3] = (()))()(0
[1, 8, 9, 0, 1, 9] = ())(()	0
[1, 8, 7, 1] = ())(0

How would you solve this task?

ENICAE

Elman network (1990)

First implementation of RNNs, simple ReLU activation and linear output.

- Initial hidden state: $h_0 = 0$
- **Update:** $h_t = \operatorname{ReLU}(W_{xh} x_t + W_{hh} h_{t-1} + b_h)$
- Final prediction: $y_T = W_{hy} h_T + b_y$

Elman network (1990)

First implementation of RNNs, simple ReLU activation and linear output.

- Initial hidden state: $h_0 = 0$
- Update: $h_t = \operatorname{ReLU}(W_{xh} x_t + W_{hh} h_{t-1} + b_h)$
- Final prediction: $y_T = W_{hy} h_T + b_y$

```
class RecNet(nn.Module):
    def __init__(self, dim_input, dim_recurrent, dim_output):
        super(RecNet, self).__init__()
        self.fc_x2h = nn.Linear(dim_input, dim_recurrent)
        self.fc_h2h = nn.Linear(dim_recurrent, dim_recurrent, bias = False)
        self.fc_h2y = nn.Linear(dim_recurrent, dim_output)
    def forward(self, x):
        h = x.new_zeros(1, self.fc_h2y.weight.size(1))
        for t in range(x.size(0)):
            h = torch.relu(self.fc_x2h(x[t,:]) + self.fc_h2h(h))
        return self.fc_h2y(h)
```

Training

- We encode the symbol at time t as a one-hot vector x_t
- ▶ To simplify the processing of variable-length sequences, we are processing samples (i.e. sequences) one at a time. We do not consider batches.

```
RNN = RecNet(dim_input = nb_symbol, dim_recurrent=50, dim_output=2)
cross_entropy = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(RNN.parameters(), lr=learning_rate)
for k in range(nb_train):
    x,l = generator.generate_input()
    y = RNN(x)
    loss = cross_entropy(y,l)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

Results

Loss decreases and fraction of correct classification increases but did our network learn?

Gating

Main idea

- Gates are a way to optionally let information through.
- The sigmoid layer outputs numbers between zero and one, describing how much of each component should be let through. A value of zero means "let nothing through," while a value of one means "let everything through!".

Gating

Main idea

- Gates are a way to optionally let information through.
- The sigmoid layer outputs numbers between zero and one, describing how much of each component should be let through. A value of zero means "let nothing through," while a value of one means "let everything through!".
- Recurrence relation: $\overline{h}_t = \text{ReLU}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$
- Forget gate: $z_t = \operatorname{sigm}(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$

• Hidden state:
$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \overline{h}_t$$

Gated RNN

```
class RecNetGating(nn.Module):
    def __init__(self, dim_input=10, dim_recurrent=50, dim_output=2):
        super(RecNetGating, self).__init__()
        self.fc_x2h = nn.Linear(dim_input, dim_recurrent)
        self.fc_h2h = nn.Linear(dim_recurrent, dim_recurrent, bias = False)
        self.fc_h2z = nn.Linear(dim_recurrent, dim_recurrent)
        self.fc_h2z = nn.Linear(dim_recurrent, dim_recurrent)
        self.fc_h2z = nn.Linear(dim_recurrent, dim_output)
    def forward(self, x):
        h = x.new_zeros(1, self.fc_h2y.weight.size(1))
        for t in range(x.size(0)):
            z = torch.sigmoid(self.fc_x2z(x[t,:])+self.fc_h2z(h))
            hb = torch.relu(self.fc_x2h(x[t,:]) + self.fc_h2h(h))
            h = z * h + (1-z) * hb
        return self.fc h2y(h)
```

Recurrent Neural Networks

Results

- Orange = previous RNN.
- Blue = Gated RNN.
- Is there a benefit with gating?

ENSAE

LSTM, GRU and multi-layer RNNs

- More parameters than Elman networks (simple RNN).
- Mitigates vanishing gradient problem through gating.
- Widely used and SOTA in many sequence learning problems.

GRU: Gated Recurrent Unit (Cho et al., 2014)

- ▶ Recurrence relation: $\overline{h}_t = \tanh(W_{xh} x_t + W_{hh} (r_t \odot h_{t-1}) + b_h)$
- Forget gate: $z_t = \operatorname{sigm}(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$
- **Reset gate:** $r_t = \operatorname{sigm}(W_{xr} x_t + W_{hr} h_{t-1} + b_r)$
- ▶ Hidden state: $h_t = z_t \odot h_{t-1} + (1 z_t) \odot \overline{h}_t$

ENSAE	2023-2024	20/49

LSTM: Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)

	11	16	-	78	-
	JA.				

Cell state

Forget gate layer

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

ENSAE	2023-2024	23/49

Input gate layer

$$\begin{split} i_t &= \sigma \left(W_i \cdot [h_{t-1}, x_t] \ + \ b_i \right) \\ \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] \ + \ b_C) \end{split}$$

ENSAE	2023-2024	24/49

Update cell state

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

ENSAE	2023-2024	25/49

Output gate

 $o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$ $h_t = o_t * \tanh \left(C_t \right)$

ENSAE	2023-2024	26/49

LSTMs in PyTorch

```
class LSTMNet(nn.Module):
   def __init__(self, dim input, dim recurrent, num layers, dim output):
       super(LSTMNet, self). init ()
       self.lstm = nn.LSTM(input size = dim input,
                           hidden size = dim recurrent.
                           num layers = num layers)
       self.fc o2v = nn.Linear(dim recurrent.dim output)
   def forward(self, x):
       x = x.unsaueeze(1)
       output, _ = self.lstm(x)
       # only last layer, shape (seq. len., bs, dim recurrent)
       # drop the batch index
       output = output.squeeze(1)
       # keep only the last hidden variable
       output = output.narrow(0, output.size(0)-1.1)
       # shape (1. dim recurrent)
       return self.fc o2v(F.relu(output))
```

Note: the prediction is done from the hidden state, hence also called the output state.

Recurrent Neural Networks

Results

- ▶ Green = Elman RNN.
- Orange = Gated RNN.
- ▶ Blue = LSTM.
- Is there a benefit with LSTM?

ENSAE

Common wisdom in 2015

Josefowicz et al. (2015) conducted an extensive exploration of different recurrent architectures, they wrote:

"We have evaluated a variety of recurrent neural network architectures in order to find an architecture that reliably outperforms the LSTM. Though there were architectures that outperformed the LSTM on some problems, we were unable to find an architecture that consistently beat the LSTM and the GRU in all experimental conditions."
Common wisdom in 2015

Josefowicz et al. (2015) conducted an extensive exploration of different recurrent architectures, they wrote:

"We have evaluated a variety of recurrent neural network architectures in order to find an architecture that reliably outperforms the LSTM. Though there were architectures that outperformed the LSTM on some problems, we were unable to find an architecture that consistently beat the LSTM and the GRU in all experimental conditions."

Now let see if the LSTM is performing better on our task of checking for balanced parentheses!

Stability during training Weights initialization, gradient vanishing and explosion

Example with simple RNNs (Elman networks, no gating mechanisms)

- The gradients are sometimes very large.
- This leads to a large drop in accuracy.
- Results are **quite random**, final performance depends on initialization.

Gradient vanishing and explosion

Breaking gradient descent

• If θ_t are the iterates of the parameters learned using stochastic gradient descent on minibatches $(x_{t,i}, y_{t,i})_{i \in [\![1,K]\!]}$ at time t, then we have

$$\theta_{t+1} = \theta_t - \frac{\eta}{K} \sum_i \nabla \mathcal{L}_{x_{t,i},y_{t,i}}(\theta) ,$$

where $\mathcal{L}_{x,y}(\theta) = \ell(g_{\theta}(x), y).$

- **Gradient vanishing:** When the gradients $\nabla \mathcal{L}_{x_{t,i},y_{t,i}}(\theta)$ are very small compared to θ_t , the iteration does not modify the parameters.
- **Gradient explosion:** When the gradients $\nabla \mathcal{L}_{x_{t,i},y_{t,i}}(\theta)$ are very large compared to θ_t , the iteration will push the parameters to extreme values.

Gradient vanishing and explosion

Why is it a problem for deep learning?

- ▶ By chain rule, the gradient tends to multiply along the layers.
- Example: If $g^{(L)}(x) = f^{(L)} \circ f^{(L-1)} \circ \cdots \circ f^{(1)}(x)$ where $f^{(L)} : \mathbb{R} \to \mathbb{R}$, then

$$g^{(L)'}(x) = \prod_{l=1}^{L} f^{(l)'}(g^{(l-1)}(x))$$

• If $f^{(l)'}(g^{(l-1)}(x)) \approx c$, then $g^{(L)'}(x) \approx c^L$.

- **Exponentially small** w.r.t. L if c < 1 (gradient vanishing).
- **Exponentially large** w.r.t. L if c > 1 (gradient explosion).

Mitigation techniques: how to avoid this?

Gradient clipping

- torch.nn.utils.clip_grad_norm_(model.parameters(), threshold)
- **Pros:** Easiest method, just limits the gradient norm to a fixed value.
- **Cons:** Only for gradient explosion, adds an extra hyper-parameter.

Mitigation techniques: how to avoid this?

Gradient clipping

- torch.nn.utils.clip_grad_norm_(model.parameters(), threshold)
- **Pros:** Easiest method, just limits the gradient norm to a fixed value.
- **Cons:** Only for gradient explosion, adds an extra hyper-parameter.

Architecture changes

- ▶ Gates in RNNs, residuals in CNNs, dropout, batch normalization, ...
- **Pros:** More principled, usually leads to better performance.
- **Cons:** Requires to change the network architecture, application dependent.

Mitigation techniques: how to avoid this?

Gradient clipping

- torch.nn.utils.clip_grad_norm_(model.parameters(), threshold)
- **Pros:** Easiest method, just limits the gradient norm to a fixed value.
- **Cons:** Only for gradient explosion, adds an extra hyper-parameter.

Architecture changes

- ▶ Gates in RNNs, residuals in CNNs, dropout, batch normalization, ...
- **Pros:** More principled, usually leads to better performance.
- **Cons:** Requires to change the network architecture, application dependent.

Weight initialization

Automatically implemented, but can have an large impact on performance

Weights initialization

Ideal initialization scheme

- ▶ The better the model is at initialization, the more changes we have of find good weights.
- We would like to have values that are reasonable, $\forall i \in [\![1, d^{(L)}]\!]$, $|g_{\theta}(x)_i| \approx 1$.
- We would like to have gradients that are neither too large nor too small

$$\forall i \in [\![1,p]\!], \qquad |\nabla \mathcal{L}_{x,y}(\theta)_i| \approx 1$$

Weights initialization

Ideal initialization scheme

- ▶ The better the model is at initialization, the more changes we have of find good weights.
- We would like to have values that are reasonable, $\forall i \in [\![1, d^{(L)}]\!]$, $|g_{\theta}(x)_i| \approx 1$.
- We would like to have gradients that are neither too large nor too small

$$\forall i \in [\![1,p]\!], \qquad |\nabla \mathcal{L}_{x,y}(\theta)_i| \approx 1$$

Simple solution

- Set $b^{(l)} = 0$ and sample the weights $W_{ij}^{(l)} \sim \mathcal{P}$ i.i.d. with expectation 0 and variance $V^{(l)}$.
- Choose $V^{(l)}$ so that the variance is constant across layers.

Weights initialization

Ideal initialization scheme

- ▶ The better the model is at initialization, the more changes we have of find good weights.
- We would like to have values that are reasonable, $\forall i \in [\![1, d^{(L)}]\!]$, $|g_{\theta}(x)_i| \approx 1$.
- We would like to have gradients that are neither too large nor too small

$$\forall i \in [\![1,p]\!], \qquad |\nabla \mathcal{L}_{x,y}(\theta)_i| \approx 1$$

Simple solution

- Set $b^{(l)} = 0$ and sample the weights $W_{ij}^{(l)} \sim \mathcal{P}$ i.i.d. with expectation 0 and variance $V^{(l)}$.
- Choose $V^{(l)}$ so that the variance is constant across layers.
- Technical assumptions:
 - The probability distribution is symmetric w.r.t. 0 and $\mathcal{P}(\{0\}) = 0$.
 - The activation function is ReLU $\sigma(x) = \max\{0, x\}$.

Preliminary results

- Let $x \in \mathbb{R}^{d^{(0)}}$ a fixed input and, $\forall l \in \llbracket 1, L \rrbracket$, $X^{(l)} = g_{\theta}^{(2l-1)}(x)$.
- For any $l \in [\![1, L]\!]$, the variables $(X_i^{(l)})_{i \in [\![1, d^{(2l-1)}]\!]}$ are identically distributed.
- The distribution of $X_i^{(l)}$ is symmetric w.r.t. 0 (and thus $\mathbb{E}(X_j^{(l)}) = 0$).

Preliminary results

- Let $x \in \mathbb{R}^{d^{(0)}}$ a fixed input and, $\forall l \in \llbracket 1, L \rrbracket$, $X^{(l)} = g_{\theta}^{(2l-1)}(x)$.
- For any $l \in [\![1, L]\!]$, the variables $(X_i^{(l)})_{i \in [\![1, d^{(2l-1)}]\!]}$ are identically distributed.
- The distribution of $X_i^{(l)}$ is symmetric w.r.t. 0 (and thus $\mathbb{E}(X_j^{(l)}) = 0$).

Proof.

The proof follows a simple recurrence:

Preliminary results

- Let $x \in \mathbb{R}^{d^{(0)}}$ a fixed input and, $\forall l \in \llbracket 1, L \rrbracket$, $X^{(l)} = g_{\theta}^{(2l-1)}(x)$.
- For any $l \in [\![1, L]\!]$, the variables $(X_i^{(l)})_{i \in [\![1, d^{(2l-1)}]\!]}$ are identically distributed.
- The distribution of $X_i^{(l)}$ is symmetric w.r.t. 0 (and thus $\mathbb{E}(X_j^{(l)}) = 0$).

Proof.

- The proof follows a simple recurrence:
- Initialization: $X_i^{(1)} = \sum_j W_{ij}^{(1)} x_j$ is identically distributed and symmetric.

Preliminary results

- Let $x \in \mathbb{R}^{d^{(0)}}$ a fixed input and, $\forall l \in \llbracket 1, L \rrbracket$, $X^{(l)} = g_{\theta}^{(2l-1)}(x)$.
- For any $l \in [\![1, L]\!]$, the variables $(X_i^{(l)})_{i \in [\![1, d^{(2l-1)}]\!]}$ are identically distributed.
- The distribution of $X_i^{(l)}$ is symmetric w.r.t. 0 (and thus $\mathbb{E}(X_j^{(l)}) = 0$).

Proof.

- The proof follows a simple recurrence:
- Initialization: $X_i^{(1)} = \sum_j W_{ij}^{(1)} x_j$ is identically distributed and symmetric.
- If the properties are verified for l, then $X_i^{(l)} = \sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)})$, which is identically distributed and symmetric.

Variance of the output value

Variance of the intermediate outputs

For any $l \in \llbracket 2, L \rrbracket$ and $i \in \llbracket 1, d^{(2l-1)} \rrbracket$, we have

$$\operatorname{var}(X_i^{(l)}) = \operatorname{var}(\sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)}))$$

Variance of the output value

Variance of the intermediate outputs

For any
$$l \in \llbracket 2, L \rrbracket$$
 and $i \in \llbracket 1, d^{(2l-1)} \rrbracket$, we have

$$\begin{aligned} \operatorname{var}(X_{i}^{(l)}) &= \operatorname{var}(\sum_{j} W_{ij}^{(l)} \sigma(X_{j}^{(l-1)})) \\ &= \sum_{j} \operatorname{var}(W_{ij}^{(l)} \sigma(X_{j}^{(l-1)})) \end{aligned}$$

Variance of the output value

Variance of the intermediate outputs

For any
$$l \in \llbracket 2, L \rrbracket$$
 and $i \in \llbracket 1, d^{(2l-1)} \rrbracket$, we have

$$\begin{aligned} \operatorname{var}(X_i^{(l)}) &= \operatorname{var}(\sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= \sum_j \operatorname{var}(W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= d^{(l-1)} \operatorname{var}(W_{ij}^{(l)}) \mathbb{E}(\sigma(X_j^{(l-1)})^2) \end{aligned}$$

Variance of the output value

Variance of the intermediate outputs

For any $l \in [\![2,L]\!]$ and $i \in [\![1,d^{(2l-1)}]\!]$, we have

$$\begin{aligned} \operatorname{var}(X_i^{(l)}) &= \operatorname{var}(\sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= \sum_j \operatorname{var}(W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= d^{(l-1)} \operatorname{var}(W_{ij}^{(l)}) \mathbb{E}(\sigma(X_j^{(l-1)})^2) \\ &= d^{(l-1)} V^{(l)} \mathbb{E}(X_j^{(l-1)^2} \mathbb{1}\{X_j^{(l-1)} > 0\}) \end{aligned}$$

Variance of the output value

Variance of the intermediate outputs

For any $l \in [\![2,L]\!]$ and $i \in [\![1,d^{(2l-1)}]\!]$, we have

$$\begin{aligned} \operatorname{var}(X_i^{(l)}) &= \operatorname{var}(\sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= \sum_j \operatorname{var}(W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= d^{(l-1)} \operatorname{var}(W_{ij}^{(l)}) \mathbb{E}(\sigma(X_j^{(l-1)})^2) \\ &= d^{(l-1)} V^{(l)} \mathbb{E}(X_j^{(l-1)^2} \mathbb{1}\{X_j^{(l-1)} > 0\}) \\ &= d^{(l-1)} V^{(l)} \operatorname{var}(X_j^{(l-1)})/2 \end{aligned}$$

Variance of the output value

Variance of the intermediate outputs

For any
$$l \in \llbracket 2, L \rrbracket$$
 and $i \in \llbracket 1, d^{(2l-1)} \rrbracket$, we have

$$\begin{aligned} \operatorname{var}(X_i^{(l)}) &= \operatorname{var}(\sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= \sum_j \operatorname{var}(W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= d^{(l-1)} \operatorname{var}(W_{ij}^{(l)}) \mathbb{E}(\sigma(X_j^{(l-1)})^2) \\ &= d^{(l-1)} V^{(l)} \mathbb{E}(X_j^{(l-1)^2} \mathbb{1}\{X_j^{(l-1)} > 0\}) \\ &= d^{(l-1)} V^{(l)} \operatorname{var}(X_j^{(l-1)})/2 \end{aligned}$$

• Hence, the variance is constant across layers if $V^{(l)} = 2/d^{(l-1)}$, and

$$\operatorname{var}(g_{\theta}(x)_i) = 2 \|x\|_2^2 / d^{(0)}$$

Kaiming initialization (Kaiming He et.al., 2015)

Gaussian weights

Our assumptions are satisfied if we use Gaussian weights $W_{ij}^{(l)} \sim \mathcal{N}\left(0, \frac{2}{d^{(l-1)}}\right)$.

Uniform weights

If we take uniform weights $W_{ij}^{(l)}\sim \mathcal{U}([-r^{(l)},r^{(l)}])$, then $V^{(l)}=r^2/3$ and

$$r^{(l)} = \sqrt{\frac{6}{d^{(l-1)}}}$$

Variance propagation during backprop

- Same analysis for backprop, but in **reverse**.
- This gives an optimal variance $V^{(l)} = 2/d^{(l)}$.

Variance propagation during backprop

- Same analysis for backprop, but in reverse.
- This gives an optimal variance $V^{(l)} = 2/d^{(l)}$.
- In order to have both the variances of gradients and of values constant, we thus need $V^{(l)} = 2/d^{(l)}$ and $V^{(l)} = 2/d^{(l-1)}...$

Variance propagation during backprop

- Same analysis for backprop, but in **reverse**.
- This gives an optimal variance $V^{(l)} = 2/d^{(l)}$.
- In order to have both the variances of gradients and of values constant, we thus need $V^{(l)}=2/d^{(l)}$ and $V^{(l)}=2/d^{(l-1)}...$
- A reasonable heuristic consists in taking the average: $V^{(l)} = \frac{4}{d^{(l)} + d^{(l-1)}}$.

Variance propagation during backprop

- Same analysis for backprop, but in reverse.
- This gives an optimal variance $V^{(l)} = 2/d^{(l)}$.
- In order to have both the variances of gradients and of values constant, we thus need $V^{(l)}=2/d^{(l)}$ and $V^{(l)}=2/d^{(l-1)}...$
- A reasonable heuristic consists in taking the average: $V^{(l)} = \frac{4}{d^{(l)} + d^{(l-1)}}$.

Xavier initialization (Xavier Glorot & Yoshua Bengio, 2010)

Let c > 0 be a hyper-parameter. The weights are initialized using the heuristic

$$W_{ij}^{(l)} \sim \mathcal{U}([-r^{(l)}, r^{(l)}]) \qquad \text{and} \qquad r^{(l)} = \sqrt{\frac{6c^2}{d^{(l)} + d^{(l-1)}}}$$

Impact of initialization in practice: https://www.deeplearning.ai/ai-notes/initialization/index.html ENSAE 2023-2024

Batch normalization

Idea

- Normalize the input of each layer by **removing mean and dividing by std**.
- Also uses a learnable affine map.

Batch normalization

Idea

- Normalize the input of each layer by **removing mean and dividing by std**.
- Also uses a learnable affine map.

Definition

• If $(x_i)_i$ is a batch of b inputs (to the layer), then the output is:

$$y_i = \frac{x_i - E}{\sqrt{V + \varepsilon}} \cdot \gamma + \beta$$

where $E = \frac{1}{b} \sum_{i} x_i$ and $V = \frac{1}{b} \sum_{i} (x_i - E)^2$ (coord.-wise), γ and β are learnable vectors.

Batch normalization

The output depends on the whole batch, not just single inputs!

Train and eval

- The behavior of batch norm is different between training and evaluation (e.g. model.train() and model.eval() in Pytorch).
- At evaluation, the model uses a (moving) average of all training batches.
- \blacktriangleright Stores E and V for each training batch, and then computes

$$(1-
ho)\sum_t
ho^t E_t$$
 and $(1-
ho)\sum_t
ho^t V_t$

where (typically) $\rho = 0.9$.

Recap

- Gradient vanishing and explosion can happen during training of deep NNs.
- Gradient clipping, batch normalization, regularisation and proper weight initialization can help stabilize training.
- The variance of the weights at initialization should be inversely proportional to the layer width.

Robustness and adversarial attacks Confusing a neural network with noise

Adversarial attacks

- Can a small (invisible) noise change the prediction of a vision model?
- Vision models are robust to random input noise.
- Vision models are extremely fragile to well-crafted input noise.

source: Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015.

ENSAE	2023-2024	44/49
	2023-2024	44/49

Adversarial attacks

- Can a small (invisible) noise change the prediction of a vision model?
- Vision models are robust to random input noise.
- Vision models are extremely fragile to well-crafted input noise.

source: Robust Physical-World Attacks on Deep Learning Visual Classification, Eykholt et al, CVPR 2018.

ENSAE

Adversarial attacks

- Can a small (invisible) noise change the prediction of a vision model?
- Vision models are robust to random input noise.
- Vision models are extremely fragile to well-crafted input noise.

source: Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, Sharif et.al., CCS 2016.

ENSAE

Adversarial attacks: examples

Fast gradient sign method (Goodfellow et.al., 2014)

- Idea: Take one gradient step in the direction that maximizes the loss.
- ▶ To control the maximum pixel noise, use the coordinates' sign instead of value.
- Limitations: Destroys performance, but cannot target a specific class.

 $x^{\mathsf{att}} = x^{\mathsf{true}} + \varepsilon \operatorname{sign}(\nabla_x \mathcal{L}(\theta, x^{\mathsf{true}}, y^{\mathsf{true}}))$

Adversarial attacks: examples

Fast gradient sign method (Goodfellow et.al., 2014)

- Idea: Take one gradient step in the direction that maximizes the loss.
- ▶ To control the maximum pixel noise, use the coordinates' sign instead of value.
- Limitations: Destroys performance, but cannot target a specific class.

 $x^{\mathsf{att}} = x^{\mathsf{true}} + \varepsilon \operatorname{sign}(\nabla_x \mathcal{L}(\theta, x^{\mathsf{true}}, y^{\mathsf{true}}))$

Iterative Target Class Method (Kurakin et.al., 2016)

- Idea: Perform gradient descent on the loss with labels swaped.
- > To control the maximum pixel noise, project on a ball of radius ε around x.
- **Limitations:** Requires to know the model weights (white box setting).

$$x_{k+1}^{\text{att}} = \mathsf{Clamp}_{x^{\text{true}},\varepsilon}\left(x_k^{\text{att}} + \varepsilon \operatorname{sign}(\nabla_x \mathcal{L}(\theta, x_k^{\text{att}}, y^{\text{att}}))\right)$$
Beyond the white box setting

White-box attacks

- Use the knowledge of the model to create the perturbation.
- Gradient descent on a modified objective (classes swapped).

Beyond the white box setting

White-box attacks

- Use the knowledge of the model to create the perturbation.
- Gradient descent on a modified objective (classes swapped).

Black-box attacks

- Attacks without access the parameters of the model.
- Use a similar model, usually works relatively well.

Beyond the white box setting

White-box attacks

- Use the knowledge of the model to create the perturbation.
- Gradient descent on a modified objective (classes swapped).

Black-box attacks

- Attacks without access the parameters of the model.
- Use a similar model, usually works relatively well.

Defenses

- Augment the dataset with adversarial attacks (brute-force).
- Control the smoothness of the model (see next).

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- ▶ If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- ▶ If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

Lipschitz continuity

First order approximation: $g_{\theta}(x + \varepsilon) - g_{\theta}(x) = J_{g,x}(x, \theta)\varepsilon + o(\|\varepsilon\|).$

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

- First order approximation: $g_{\theta}(x + \varepsilon) g_{\theta}(x) = J_{g,x}(x,\theta)\varepsilon + o(\|\varepsilon\|).$
- Control on $||J_{g_{\theta}}(x)||_2 = \max_{u \neq 0} \frac{||J_{g_{\theta}}(x)u||_2}{||u||_2}$ (operator norm) leads to robustness.

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

- First order approximation: $g_{\theta}(x + \varepsilon) g_{\theta}(x) = J_{g,x}(x,\theta)\varepsilon + o(\|\varepsilon\|).$
- ▶ Control on $||J_{g_{\theta}}(x)||_2 = \max_{u \neq 0} \frac{\|J_{g_{\theta}}(x)u\|_2}{\|u\|_2}$ (operator norm) leads to robustness.
- Lipschitz constant: $L_{g_{\theta}} = \sup_{x} \|J_{g_{\theta}}(x)\|_{2}$.

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- ▶ If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

- First order approximation: $g_{\theta}(x + \varepsilon) g_{\theta}(x) = J_{g,x}(x, \theta)\varepsilon + o(\|\varepsilon\|).$
- Control on $||J_{g_{\theta}}(x)||_2 = \max_{u \neq 0} \frac{\|J_{g_{\theta}}(x)u\|_2}{\|u\|_2}$ (operator norm) leads to robustness.
- Lipschitz constant: $L_{g_{\theta}} = \sup_{x} \|J_{g_{\theta}}(x)\|_{2}$.
- ▶ For piece-wise linear interpolation, Lipschitz constant is smaller than target function.

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- ▶ If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

- First order approximation: $g_{\theta}(x + \varepsilon) g_{\theta}(x) = J_{g,x}(x, \theta)\varepsilon + o(\|\varepsilon\|).$
- ▶ Control on $||J_{g_{\theta}}(x)||_2 = \max_{u \neq 0} \frac{||J_{g_{\theta}}(x)u||_2}{||u||_2}$ (operator norm) leads to robustness.
- Lipschitz constant: $L_{g_{\theta}} = \sup_{x} \|J_{g_{\theta}}(x)\|_{2}$.
- ▶ For piece-wise linear interpolation, Lipschitz constant is smaller than target function.
- For neural networks: $L_{g_{\theta}} \leq \prod_{l} L_{f^{(l)}} \dots$ can be exponential in number of layers!