Generative models in vision and text (Transformers, GANs)

Lessons: **Kevin Scaman** TPs: Paul Lerner

Class overview

Lessons

1. Introduction, simple architectures (MLPs) and autodiff	09/02
2. Training pipeline, optimization and image analysis (CNNs)	16/02
3. Sequence regression (RNNs), stability and robustness	08/03
4. Generative models in vision and text (Transformers, GANs)	15/03

Generative models Beyond classification tasks

What is a generative model?

Generative vs. discriminative

- Discriminative tasks such as classification aim at separating data.
- Generative tasks aim at creating new data.

Classification (access to (X,y) pairs)

Sampling (access to X only)

Discriminative tasks

Generative tasks

Image generation (face generation, deepfakes, ...).

source: https://this-person-does-not-exist.com/en

ENSAE

Image generation (face generation, deepfakes, ...).

source: https://this-person-does-not-exist.com/en

- Image generation (face generation, deepfakes, ...).
- Prompt-based image generation (Dalle2, Imagen, MidjourneyAl, ...).

source: MidjourneyAl. https://midjourney.com/

- Image generation (face generation, deepfakes, ...).
- Prompt-based image generation (Dalle2, Imagen, MidjourneyAI, ...).
- ▶ Text generation (Bert, GPT2, GPT3, ChatGPT, Bard, Sparrow, ...).

source: ChatGPT. https://chat.openai.com/

Neural architectures for generative tasks

Key aspects of a generative model

- ▶ We want to **output complex data** (e.g. images, text, ...).
- We want to **sample random outputs** from a learnt distribution.
- Usually involves more **difficult optimization problems** than standard ERM.
- How do we measure performance?

Neural architectures for generative tasks

Key aspects of a generative model

- ▶ We want to **output complex data** (e.g. images, text, ...).
- We want to **sample random outputs** from a learnt distribution.
- Usually involves more **difficult optimization problems** than standard ERM.
- How do we measure performance?

Three main approaches

- 1. Variational auto-encoders (VAEs)
- 2. Generative Adversarial Networks (GANs)
- 3. Score-based generative models / diffusion models

Generating random variables Classical approaches to sampling probability distributions

Approximating distributions with NNs

Intuition: How do we create models whose outputs are random variables?

Approximating distributions with NNs

- Intuition: How do we create models whose outputs are random variables?
- **Data:** $\hat{\mathcal{D}}_n = (X_1, \ldots, X_n)$ i.i.d. according to some target distribution \mathcal{D} .

Approximating distributions with NNs

- Intuition: How do we create models whose outputs are random variables?
- **Data:** $\hat{\mathcal{D}}_n = (X_1, \dots, X_n)$ i.i.d. according to some target distribution \mathcal{D} .
- **Objective:** sample new elements $\tilde{X} \sim \mathcal{D}$ from the target distribution.

Approximating distributions with NNs

- Intuition: How do we create models whose outputs are random variables?
- **Data:** $\hat{\mathcal{D}}_n = (X_1, \dots, X_n)$ i.i.d. according to some target distribution \mathcal{D} .
- **• Objective:** sample new elements $\tilde{X} \sim \mathcal{D}$ from the target distribution.

Extensions

Prompt-based models: one data distribution per input query. Equivalent to supervised learning with a random output.

Approximating distributions with NNs

- Intuition: How do we create models whose outputs are random variables?
- **Data:** $\hat{\mathcal{D}}_n = (X_1, \dots, X_n)$ i.i.d. according to some target distribution \mathcal{D} .
- **Objective:** sample new elements $\tilde{X} \sim \mathcal{D}$ from the target distribution.

Extensions

- Prompt-based models: one data distribution per input query. Equivalent to supervised learning with a random output.
- **Learn a density function:** some models also provide a density function.

No clear cut: classification tasks also generate probability distributions...

Generating random variables

How to sample from a known distribution $\mathcal{D}?$

Standard approaches

• Parametric families of distributions: sampled by a simple function of a base distribution. E.g. Gaussian $X = \mu + \sigma Y$ where $Y \sim \mathcal{N}(0, 1)$.

Standard approaches

- Parametric families of distributions: sampled by a simple function of a base distribution. E.g. Gaussian X = μ + σY where Y ~ N(0,1).
- Inversion sampling: For 1D r.v., we have $X = F^{-1}(Y)$ where $Y \sim \mathcal{U}([0,1])$ is uniform in [0,1] and F is the cumulative distribution function of \mathcal{D} .

Standard approaches

- Parametric families of distributions: sampled by a simple function of a base distribution. E.g. Gaussian X = μ + σY where Y ~ N(0,1).
- Inversion sampling: For 1D r.v., we have $X = F^{-1}(Y)$ where $Y \sim \mathcal{U}([0,1])$ is uniform in [0,1] and F is the cumulative distribution function of \mathcal{D} .
- Monte-Carlo Markov Chains: Start with a base distribution (e.g. Gaussian), and iteratively refine it to get closer and closer to the target distribution \mathcal{D} .

Standard approaches

- Parametric families of distributions: sampled by a simple function of a base distribution. E.g. Gaussian $X = \mu + \sigma Y$ where $Y \sim \mathcal{N}(0, 1)$.
- Inversion sampling: For 1D r.v., we have $X = F^{-1}(Y)$ where $Y \sim \mathcal{U}([0,1])$ is uniform in [0,1] and F is the cumulative distribution function of \mathcal{D} .
- Monte-Carlo Markov Chains: Start with a base distribution (e.g. Gaussian), and iteratively refine it to get closer and closer to the target distribution \mathcal{D} .

How to use it for generative models?

- **Parameter modelling:** Learn the parameters $(\mu, \sigma) = g_{\theta}(x)$ to generate $\mathcal{N}(\mu, \sigma)$.
- Transformation: generate with $g_{\theta}(Y) \sim \mathcal{D}$ where $Y \sim \mathcal{N}(0, I)$ (VAEs, GANs).
- **Dynamics:** Learn iterative refinements that transform $\mathcal{N}(0, I)$ into \mathcal{D} (diffusion).

Variational Autoencoders (VAEs) From compression to generation

But first... what is an autoencoder?

- **• Objective:** Learn a **compressed data representation** in an unsupervised manner.
- ▶ Idea: Map data points to themselves $g_{\theta}(x) = x$ with small inner representation.
- **Loss:** Let $e_{\theta}, d_{\theta'}$ be two NNs, we want to minimize $\mathbb{E}(||X d_{\theta'}(e_{\theta}(X))||^2)$.

But first... what is an autoencoder?

- Compression: If latent space is smaller than input space, information is compressed.
- Generation: We can sample from the latent space.

Autoencoders in PyTorch

The simplest possible autoencoder with a single affine layer as encoder and as decoder:

```
class AutoEncoder(nn.Module):
def __init__(self, input_dim, encoding_dim):
    super(AutoEncoder, self).__init__()
    self.encoder = nn.Linear(input_dim, encoding_dim)
    self.decoder = nn.Linear(encoding_dim, input_dim)
    def forward(self, x):
    encoded = self.encoder(x)
    decoded = self.decoder(encoded)
    return decoded
```

Variational Autoencoders

Autoencoders in PyTorch

After training, we obtain:

Representation learning with autoencoders

Interpolation in latent space: We can interpolate between two images x and y with

$$x_{\alpha} = d_{\theta'} \left(\alpha e_{\theta}(x) + (1 - \alpha) e_{\theta}(y) \right)$$

for $\alpha \in [0,1]$.

Results: Interpolation between digits 2 and 9.

Better than in the pixel space, but not perfect still...

Representation learning with autoencoders

• Interpolation in latent space: We can interpolate between two images x and y with

$$x_{\alpha} = d_{\theta'} \left(\alpha e_{\theta}(x) + (1 - \alpha) e_{\theta}(y) \right)$$

for $\alpha \in [0, 1]$.

s this a good generative model?

• Limitations: There is no constraint on the regularity of the latent space embedding.

source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

ENSAE	2023-2024	20/53
-------	-----------	-------

√ariational Autoencoders (VAEs)

- **Objective:** Regularize by forcing the embedding to be **robust to noise**.
- Idea: The encoder returns the parameters $(\mu_x, \sigma_x) = e_{\theta}(x)$ of a Gaussian distribution. We sample $Z_x \sim \mathcal{N}(\mu_x, \sigma_x)$ and minimize

$$\min_{\theta,\theta'} \frac{1}{n} \sum_{i=1}^{n} \|x_i - d_{\theta'}(Z_{x_i})\|^2 + d_{\mathsf{KL}} \Big(\mathcal{N}(\mu_{x_i}, \sigma_{x_i}), \, \mathcal{N}(0, I) \Big)$$

where $d_{\mathrm{KL}}(p,q) = \mathbb{E}_{X \sim p}(\log(p(X)/q(X)))$ measures the "distance" between p and q.

Variational Autoencoders

Regularization with KL divergence

- Benefits: Each image is pushed to be mapped to a normal distribution.
- **Sampling:** We can sample new images with $d_{\theta'}(Z)$ where $Z \sim \mathcal{N}(0, I)$.

Performance measures When is our model good enough? Performance measures

Comparing data distribution and generated distribution

Question: How should we measure distances between real and generated distributions?

Performance measures

Comparing data distribution and generated distribution

Question: How should we measure distances between real and generated distributions?

Likelihood of the data distribution

We already saw that we can train a probabilistic model by maximizing the likelihood of the training data points (approach used by most of statistics!).

Likelihood of the data distribution

- We already saw that we can train a probabilistic model by maximizing the likelihood of the training data points (approach used by most of statistics!).
- Equivalent to minimizing the **negative log-likelihood**:

$$\min_{\theta} - \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

where (x_1, \ldots, x_n) are the training data points and p_{θ} is the density of the distribution.
Performance measures

Likelihood of the data distribution

- We already saw that we can train a probabilistic model by maximizing the likelihood of the training data points (approach used by most of statistics!).
- Equivalent to minimizing the **negative log-likelihood**:

$$\min_{\theta} - \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

where (x_1, \ldots, x_n) are the training data points and p_{θ} is the density of the distribution. • **Cons:** Requires to have access to the density p_{θ} . Can overfit training data.

Likelihood of the data distribution

- We already saw that we can train a probabilistic model by maximizing the likelihood of the training data points (approach used by most of statistics!).
- Equivalent to minimizing the **negative log-likelihood**:

$$\min_{\theta} - \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

where (x_1, \ldots, x_n) are the training data points and p_{θ} is the density of the distribution.

- **Cons:** Requires to have access to the density p_{θ} . Can overfit training data.
- This is equivalent to minimizing the Kullback-Leibler divergence $d_{KL}(\hat{p}_n, p_\theta)$, where:

$$d_{KL}(p,q) = \mathbb{E}\left(\ln\left(\frac{p(X)}{q(X)}\right)\right)$$

where $\hat{p}_n = \frac{1}{n} \sum_i \delta_{x_i}$ and $X \sim p$.

Other performance metrics

Wasserstein distance

Measures how similar are the two measures via evaluation functions:

$$d_W(\mu,\nu) = \sup_{f \in \mathsf{Lip}_1} |\mathbb{E}(f(X)) - \mathbb{E}(f(Y))|$$

where $X \sim \mu$, $Y \sim \nu$ and Lip₁ is the space of 1-Lipschitz functions.

Other performance metrics

Wasserstein distance

Measures how similar are the two measures via evaluation functions:

$$d_W(\mu,\nu) = \sup_{f \in \mathsf{Lip}_1} |\mathbb{E}(f(X)) - \mathbb{E}(f(Y))|$$

where $X\sim\mu,\,Y\sim\nu$ and ${\rm Lip}_1$ is the space of 1-Lipschitz functions.

- Measures are similar if there is **no way to distinguish** them with (Lipschitz) statistics.
- Another (equivalent) definition via **optimal transport**.

Other performance metrics

Wasserstein distance

Measures how similar are the two measures via evaluation functions:

$$d_W(\mu,\nu) = \sup_{f \in \mathsf{Lip}_1} |\mathbb{E}(f(X)) - \mathbb{E}(f(Y))|$$

where $X\sim\mu,\,Y\sim\nu$ and ${\rm Lip}_1$ is the space of 1-Lipschitz functions.

- Measures are similar if there is **no way to distinguish** them with (Lipschitz) statistics.
- Another (equivalent) definition via optimal transport.

Human evaluation

- Compare the outputs and decide which generative model you prefer...
- Limitations: subjective, and difficult to assess diversity.

Generative Adversarial Networks (GANs) Asking another NN if your NN is good enough

Generative Adversarial Networks (Goodfellow et.al., 2014)

- Idea: Use another NN (discriminator) to compare true and generated images.
- > Discriminator finds **mistakes** in the generation, and generator learns to **fool** the critic.

• **Generator:** g_{θ} generates a fake sample $g_{\theta}(Z)$ with a Gaussian r.v. $Z \sim \mathcal{N}(0, I)$.

- **Generator:** g_{θ} generates a fake sample $g_{\theta}(Z)$ with a Gaussian r.v. $Z \sim \mathcal{N}(0, I)$.
- **Discriminator:** $d_{\theta'}$ is a classifier and $d_{\theta'}(x)$ is the probability for x to be a real sample.

- **Generator:** g_{θ} generates a fake sample $g_{\theta}(Z)$ with a Gaussian r.v. $Z \sim \mathcal{N}(0, I)$.
- **Discriminator:** $d_{\theta'}$ is a **classifier** and $d_{\theta'}(x)$ is the probability for x to be a real sample.
- **Learning:** g_{θ} and $d_{\theta'}$ are learnt **alternatively**, i.e. one is fixed when the other is learnt.
- **Loss:** For real images (x_1, \ldots, x_n) and generated images $(g_{\theta}(Z_1), \ldots, g_{\theta}(Z_n))$, we want

$$\max_{\theta} \min_{\theta'} \mathcal{L}(\theta, \theta') = -\frac{1}{n} \sum_{i=1}^{n} \log\left(d_{\theta'}(x_i)\right) + \log\left(1 - d_{\theta'}(g_{\theta}(z_i))\right)$$

- **Generator:** g_{θ} generates a fake sample $g_{\theta}(Z)$ with a Gaussian r.v. $Z \sim \mathcal{N}(0, I)$.
- **Discriminator:** $d_{\theta'}$ is a **classifier** and $d_{\theta'}(x)$ is the probability for x to be a real sample.
- **Learning:** g_{θ} and $d_{\theta'}$ are learnt **alternatively**, i.e. one is fixed when the other is learnt.
- **Loss:** For real images (x_1, \ldots, x_n) and generated images $(g_{\theta}(Z_1), \ldots, g_{\theta}(Z_n))$, we want

$$\max_{\theta} \min_{\theta'} \mathcal{L}(\theta, \theta') = -\frac{1}{n} \sum_{i=1}^{n} \log\left(d_{\theta'}(x_i)\right) + \log\left(1 - d_{\theta'}(g_{\theta}(z_i))\right)$$

Interpretation: Discriminator minimizes its BCE loss, generator tries to maximize it.

Recap

- Generative models rely on learning to sample probability distributions.
- VAEs use an Encoder-Decoder architecture to learn a low-dimensional latent representation of the data distribution.
- GANs use two adversarial networks trained alternatively (Generator and Discriminator).
- ▶ To create images from low-dimensional vectors, we need to use transposed convolutions.
- ► Training is very **unstable**, and requires lots of tricks in practice.

Understanding the Transformer architecture* State-of-the-art natural language processing models

*...with the help of a Transformer architecture. $\hfill \odot$

Introduction to Natural Language Processing (NLP)

Typical language tasks

- **Text to label:** Sentiment analysis, text categorization, true/false question answering
- Text to text: Translation, summarization, correction (grammar), question answering, chatbots, content creation, auto-completion
- Others: speech to text, text to speech / image / video.

Auto-completion is all you need...!

Next word prediction

- **Objective:** Guess the next character/word/token (this is a **classification** task!).
- **Definition:** Let \mathcal{D} be a finite dictionary (i.e. set) of characters/words/tokens, and $(u_1^i, \ldots, u_t^i)_{i \in [\![1,n]\!]} \in \mathcal{D}^{t \times n}$ a training dataset of sequences (e.g. text doc.) of length t.
- ▶ Task: Let $(u_1, \ldots, u_t) \in$ a sequence. We want to predict u_t given (u_1, \ldots, u_{t-1}) .

"Hello, my name is Sam. How are" \rightarrow "you" "To be or not to" \rightarrow "I am playing in the" \rightarrow

Auto-completion is all you need...!

Next word prediction

- **Objective:** Guess the next character/word/token (this is a **classification** task!).
- **Definition:** Let \mathcal{D} be a finite dictionary (i.e. set) of characters/words/tokens, and $(u_1^i, \ldots, u_t^i)_{i \in [\![1,n]\!]} \in \mathcal{D}^{t \times n}$ a training dataset of sequences (e.g. text doc.) of length t.
- ▶ **Task:** Let $(u_1, \ldots, u_t) \in$ a sequence. We want to predict u_t given (u_1, \ldots, u_{t-1}) .

"Hello, my name is Sam. How are" \rightarrow "you" "To be or not to" \rightarrow "be" "I am playing in the" \rightarrow

Auto-completion is all you need...!

Next word prediction

- **Objective:** Guess the next character/word/token (this is a **classification** task!).
- **Definition:** Let \mathcal{D} be a finite dictionary (i.e. set) of characters/words/tokens, and $(u_1^i, \ldots, u_t^i)_{i \in [\![1,n]\!]} \in \mathcal{D}^{t \times n}$ a training dataset of sequences (e.g. text doc.) of length t.
- ▶ Task: Let $(u_1, \ldots, u_t) \in$ a sequence. We want to predict u_t given (u_1, \ldots, u_{t-1}) .

"Hello, my name is Sam. How are"
$$\rightarrow$$
 "you"
"To be or not to" \rightarrow "be"
"I am playing in the" \rightarrow "garden"

Early generative models: statistical models

A simple Markov model (Shannon, 1948)

- **Idea:** Learn the transition probabilities from one word to another.
- **Method:** Learn the probability $p_v(u)$ of a token $u \in \mathcal{D}$ appearing after the token $u \in \mathcal{D}$.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-ACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

source: A Mathematical Theory of Communication (Shannon, 1948)

Early generative models: RNNs

Recurrent Neural Networks

- Hidden variable dynamics: $h_t = f_W(x_t, h_{t-1})$
- **Example:** $h_t = \operatorname{ReLU}(W_{hh} h_{t-1} + W_{xh} x_t)$
- **Prediction:** next token x_{t+1} is randomly sampled according to the probability

$$p_{h_t}(u) = \mathsf{Softmax}_u(W_{hp} h_t + W_{xp} x_t)$$

source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ENSAE

Generative models: general form

Next token predictors

In general, we have a model that returns a probability distribution on the dictionary given the K last tokens of an input sequence $(u_1, \ldots, u_{t-1}) \in \mathcal{D}^{(t-1) \times n}$:

$$\forall u \in \mathcal{D}, \quad p_{(u_{t-K},\dots,u_{t-1})}(u) = g_{\theta}((u_{t-K},\dots,u_{t-1}))_u$$

Text generation

• We sample each token in the sequence iteratively given the K previous tokens.

Limitations

- ▶ If *K* is small, difficult to deal with **long-term dependencies**.
- Sequential by construction. Hard to parallelize.

Softmax probabilities

- ▶ Idea: Create differentiable selection mechanisms to identify valuable sequence elements.
- **Definition:** Let $x = x_1, \ldots, x_n$ be scores associated to n items, then

$$\mathsf{Softmax}_i(x) = rac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$

• **Properties:** We have Softmax_i $(x) \in [0,1]$ and $\sum_i \text{Softmax}_i(x) = 1$.

Softmax probabilities

- ▶ Idea: Create differentiable selection mechanisms to identify valuable sequence elements.
- **Definition:** Let $x = x_1, \ldots, x_n$ be scores associated to n items, then

$$\mathsf{Softmax}_i(x) = rac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$

• **Properties:** We have Softmax_i $(x) \in [0,1]$ and $\sum_i \text{Softmax}_i(x) = 1$.

Applications

• **Cross-entropy:** We have $\ell_{CE}(y, y') = -\log(\operatorname{Softmax}_{y'}(y))$.

Softmax probabilities

- **Idea:** Create differentiable **selection mechanisms** to identify valuable sequence elements.
- **Definition:** Let $x = x_1, \ldots, x_n$ be scores associated to n items, then

$$\mathsf{Softmax}_i(x) = rac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$

• **Properties:** We have Softmax_i $(x) \in [0,1]$ and $\sum_i \text{Softmax}_i(x) = 1$.

Applications

- **Cross-entropy:** We have $\ell_{CE}(y, y') = -\log(\operatorname{Softmax}_{y'}(y))$.
- Max: We can return a "soft max" with $\sum_i \text{Softmax}_i(x) x_i$ or $\log(\sum_{j=1}^n e^{x_j})$.

Softmax probabilities

- ▶ Idea: Create differentiable selection mechanisms to identify valuable sequence elements.
- **Definition:** Let $x = x_1, \ldots, x_n$ be scores associated to n items, then

$$\mathsf{Softmax}_i(x) = rac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$

• **Properties:** We have $\text{Softmax}_i(x) \in [0, 1]$ and $\sum_i \text{Softmax}_i(x) = 1$.

Applications

- **Cross-entropy:** We have $\ell_{CE}(y, y') = -\log(\operatorname{Softmax}_{y'}(y))$.
- Max: We can return a "soft max" with $\sum_i \text{Softmax}_i(x) x_i$ or $\log(\sum_{j=1}^n e^{x_j})$.
- Argmax: We can select the item with highest score s_i with $\sum_i \text{Softmax}_i(s) x_i$.

Text generation (Transformers)

Attention layers: first use in translation (Bahdanau et.al., 2015)

Idea: Align the words between two different languages using attention.

- ▶ Idea: Align the words between two different languages using attention.
- Encoding: For an input sentence (e.g. in English) (u₁,..., u_T), we use an LSTM to compute hidden vectors representing each word/token (h₁,..., h_T).

- ▶ Idea: Align the words between two different languages using attention.
- **Encoding:** For an input sentence (e.g. in English) (u_1, \ldots, u_T) , we use an LSTM to compute hidden vectors representing each word/token (h_1, \ldots, h_T) .
- **Decoding:** We then compute recursively the hidden state of the translated sentence $s_t = f(s_{t-1}, y_{t-1}, c_t)$ where y_{t-1} is the previous token, and c_t is a context vector.

- ▶ Idea: Align the words between two different languages using attention.
- Encoding: For an input sentence (e.g. in English) (u₁,..., u_T), we use an LSTM to compute hidden vectors representing each word/token (h₁,..., h_T).
- **Decoding:** We then compute recursively the hidden state of the translated sentence $s_t = f(s_{t-1}, y_{t-1}, c_t)$ where y_{t-1} is the previous token, and c_t is a context vector.
- **Context:** Using attention, we select the token element of the original sentence

$$c_t = \sum_{i=1}^T \mathsf{Softmax}_i(a(s_{t-1}, y_{t-1}))h_i$$

- Idea: Align the words between two different languages using attention.
- Encoding: For an input sentence (e.g. in English) (u₁,..., u_T), we use an LSTM to compute hidden vectors representing each word/token (h₁,..., h_T).
- **Decoding:** We then compute recursively the hidden state of the translated sentence $s_t = f(s_{t-1}, y_{t-1}, c_t)$ where y_{t-1} is the previous token, and c_t is a context vector.
- **Context:** Using attention, we select the token element of the original sentence

$$c_t = \sum_{i=1}^T \mathsf{Softmax}_i(a(s_{t-1}, y_{t-1}))h_i$$

Prediction: We sample according to $y_i \sim g(y_{i-1}, s_i, c_i)$.

ENSAE

Text generation (Transformers)

Attention layers: first use in translation (Bahdanau et.al., 2015)

source: Neural Machine Translation by Jointly Learning to Align and Translate (Bahdanau et.al., 2015)

ENSAE

2023-2024

Attention is all you need (Vaswani et.al., 2017)

Idea: Select values by matching keys and queries.

Attention is all you need (Vaswani et.al., 2017)

- Idea: Select values by matching keys and queries.
- **Example:** Return a video (value) for a search (query) matching the video's title (key).

Attention is all you need (Vaswani et.al., 2017)

- Idea: Select values by matching keys and queries.
- **Example:** Return a video (value) for a search (query) matching the video's title (key).
- **Definition:** For queries $Q \in \mathbb{R}^{k \times S}$, keys $K \in \mathbb{R}^{k \times T}$ and values $V \in \mathbb{R}^{d_{out} \times T}$, return, $\forall s \in [\![1, S]\!]$,

$$Y_s = \sum_{t=1}^{T} \mathsf{Softmax}_t(\mathsf{score}(Q_s, K)) V_t$$

Attention is all you need (Vaswani et.al., 2017)

- Idea: Select values by matching keys and queries.
- **Example:** Return a video (value) for a search (query) matching the video's title (key).
- **Definition:** For queries $Q \in \mathbb{R}^{k \times S}$, keys $K \in \mathbb{R}^{k \times T}$ and values $V \in \mathbb{R}^{d_{out} \times T}$, return, $\forall s \in [\![1, S]\!]$,

$$Y_s = \sum_{t=1}^{T} \mathsf{Softmax}_t(\mathsf{score}(Q_s, K)) V_t$$

• **Usual score:** Dot-product score $(Q_s, K) = \frac{Q_s^T K}{\sqrt{k}}$.

(Self-)attention layers in Transformers

Self-attention

• Idea: We keep keys, values and pairs in a single input tensor X.

(Self-)attention layers in Transformers

Self-attention

- Idea: We keep keys, values and pairs in a single input tensor X.
- **Definition:** Let $Q = W_Q X$, $K = W_K X$ and $V = W_V X$, then

$$Y_s = \sum_{t=1}^T \operatorname{Softmax}_t \left(\frac{Q_s^\top K}{\sqrt{k}} \right) V_t$$
(Self-)attention layers in Transformers

Self-attention

- Idea: We keep keys, values and pairs in a single input tensor X.
- **Definition:** Let $Q = W_Q X$, $K = W_K X$ and $V = W_V X$, then

$$Y_s = \sum_{t=1}^T \operatorname{Softmax}_t \left(\frac{Q_s^\top K}{\sqrt{k}} \right) V_t$$

▶ We start with an input tensor $X \in \mathbb{R}^{d_{in} \times T}$, and return an output tensor $Y \in \mathbb{R}^{d_{out} \times T}$ with a choice of weight parameters $W_Q \in \mathbb{R}^{k \times d_{in}}, W_K \in \mathbb{R}^{k \times d_{in}}, W_V \in \mathbb{R}^{d_{out} \times d_{in}}$.

(Self-)attention layers in Transformers

Self-attention

- Idea: We keep keys, values and pairs in a single input tensor X.
- **Definition:** Let $Q = W_Q X$, $K = W_K X$ and $V = W_V X$, then

$$Y_s = \sum_{t=1}^T \mathsf{Softmax}_t \left(\frac{Q_s^\top K}{\sqrt{k}}\right) V_t$$

▶ We start with an input tensor $X \in \mathbb{R}^{d_{in} \times T}$, and return an output tensor $Y \in \mathbb{R}^{d_{out} \times T}$ with a choice of weight parameters $W_Q \in \mathbb{R}^{k \times d_{in}}, W_K \in \mathbb{R}^{k \times d_{in}}, W_V \in \mathbb{R}^{d_{out} \times d_{in}}$.

Multi-head attention

As for channels in convolution layers, we perform H parallel self-attention layers, and combine them with a linear layer. Usual choice: take $d_{in} = d_{out} \cdot H$.

Multi-head attention

source: Attention is all you need (Vaswani et.al., 2017)

The Transformer architecture (Vaswani et.al., 2017)

source: Attention is all you need (Vaswani et.al., 2017)

Positional encoding

Limitations of the multi-head attention block

- **Time complexity:** Quadratic w.r.t. sequence length, $O(mT^2k)$ to generate m tokens.
- Permutation-invariance: All sequence elements are treated equally... order is lost!

Positional encoding

Limitations of the multi-head attention block

- **Time complexity:** Quadratic w.r.t. sequence length, $O(mT^2k)$ to generate m tokens.
- Permutation-invariance: All sequence elements are treated equally... order is lost!

Positional encoding

- Idea: We add the **position** t to each input token $u_t...$ but in a more fancy way.
- Implementation: Let $v_t = u_t + p_t$, where

$$p_t = \left(\cos\left(\frac{t}{10000^{2i/k}}\right), \sin\left(\frac{t}{10000^{2i/k}}\right)\right)_{i \in [\![1,k/2]\!]}$$

Properties: p_t uniquely defines t, but is better to encode translations and periodicity.

Positional encoding: parallel computations

source: https://dataflowr.github.io/website/modules/12-attention/

Layer normalization

Idea

- Same as batch normalization, but normalized **per layer** instead of per batch.
- Ensures that all elements in the sequence have approximately the same amplitude.

Layer normalization

Idea

- Same as batch normalization, but normalized **per layer** instead of per batch.
- Ensures that all elements in the sequence have approximately the same amplitude.

Definition

• If $(x_i)_i$ is a batch of b inputs (to the layer), then the output is:

$$y_i = \frac{x_i - E}{\sqrt{V + \varepsilon}} \cdot \gamma + \beta$$

where $E = \frac{1}{d} \sum_{i} x_i$ and $V = \frac{1}{d} \sum_{i} (x_i - E)^2$ (coord.-wise), γ and β are learnable vectors.

The GPT architecture (Radford et.al., 2018)

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

source: Improving Language Understanding by Generative Pre-Training (Radford et.al., 2018)

Human brain: est. an average of 86B neurons and 100T synapses.

NLP's Moore's Law: Every year model size increases by 10x

source: https://medium.com/Charishdatalab/unveiling-the-power-of-large-language-models-llms-e235cLeba8a9

2023-2024

The LLM family: recent models

Fig. 1. A timeline of existing large language models (having a size larger than 10B) in recent years. We mark the open-source LLMs in yellow color.

source: https://wandb.ai/vincenttu/blog_posts/reports/A-Survey-of-Large-Language-Models--VmlldzozOTY2MDM1

ENSAE	2023-2024	
-------	-----------	--

The LLM family: architecture details

Model	Category	Size	Normalization	PE	Activation	Bias	#L	#H	d_{model}	MCL
GPT3 [55]	Casual decoder	175B	Pre Layer Norm	Learned	GeLU	\checkmark	96	96	12288	2048
PanGU- α [73]	Casual decoder	207B	Pre Layer Norm	Learned	GeLU	\checkmark	64	128	16384	1024
OPT [79]	Casual decoder	175B	Pre Layer Norm	Learned	ReLU	\checkmark	96	96	12288	2048
PaLM [56]	Casual decoder	540B	Pre Layer Norm	RoPE	SwiGLU	\times	118	48	18432	2048
BLOOM [66]	Casual decoder	176B	Pre Layer Norm	ALiBi	GeLU	\checkmark	70	112	14336	2048
MT-NLG [99]	Casual decoder	530B	-	-	-	-	105	128	20480	2048
Gopher [59]	Casual decoder	280B	Pre RMS Norm	Relative	-	-	80	128	16384	-
Chinchilla [34]	Casual decoder	70B	Pre RMS Norm	Relative	-	-	80	64	8192	-
Galactica [35]	Casual decoder	120B	Pre Layer Norm	Learned	GeLU	×	96	80	10240	2048
LaMDA [85]	Casual decoder	137B	-	Relative	GeGLU	-	64	128	8192	-
Jurassic-1 [89]	Casual decoder	178B	Pre Layer Norm	Learned	GeLU	\checkmark	76	96	13824	2048
LLaMA [57]	Casual decoder	65B	Pre RMS Norm	RoPE	SwiGLU	\checkmark	80	64	8192	2048
GLM-130B [80]	Prefix decoder	130B	Post Deep Norm	RoPE	GeGLU	\checkmark	70	96	12288	2048
T5 [71]	Encoder-decoder	11B	Pre RMS Norm	Relative	ReLU	×	24	128	1024	-

source: https://wandb.ai/vincenttu/blog_posts/reports/A-Survey-of-Large-Language-Models--VmlldzozOTY2MDM1

What we didn't discuss

Masking: to preserve causality.

What we didn't discuss

- Masking: to preserve causality.
- > Alignment Tuning: Reinforcement Learning with Human Feedback (RHLF).

What we didn't discuss

- Masking: to preserve causality.
- Alignment Tuning: Reinforcement Learning with Human Feedback (RHLF).
- **Fast fine-tuning:** efficient fine-tuning with low rank approximations (LoRA and QLoRA).

What we didn't discuss

- Masking: to preserve causality.
- Alignment Tuning: Reinforcement Learning with Human Feedback (RHLF).
- **Fast fine-tuning:** efficient fine-tuning with low rank approximations (LoRA and QLoRA).
- Improving model scalability: Mixture of Experts (MoE) and Mamba.

What we didn't discuss

- Masking: to preserve causality.
- Alignment Tuning: Reinforcement Learning with Human Feedback (RHLF).
- **Fast fine-tuning:** efficient fine-tuning with low rank approximations (LoRA and QLoRA).
- Improving model scalability: Mixture of Experts (MoE) and Mamba.
- Training details of LLMs: a nice survey on training hyper-param. and technical details: https://wandb.ai/vincenttu/blog_posts/reports/

 $\verb|A-Survey-of-Large-Language-Models--VmlldzozOTY2MDM1|| \\$

What we didn't discuss

- Masking: to preserve causality.
- Alignment Tuning: Reinforcement Learning with Human Feedback (RHLF).
- **Fast fine-tuning:** efficient fine-tuning with low rank approximations (LoRA and QLoRA).
- Improving model scalability: Mixture of Experts (MoE) and Mamba.
- Training details of LLMs: a nice survey on training hyper-param. and technical details: https://wandb.ai/vincenttu/blog_posts/reports/

A-Survey-of-Large-Language-Models--VmlldzozOTY2MDM1

Model performance and evaluation: many benchmark tasks, but can overfit. Generation quality: https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

Recap

- Transformers = Attention (+ LayerNorm + Residuals + MLPs + Positional encoding).
- Text generation using a simple next token prediction approach.
- Encoder-Decoder architecture for translation, only Decoder for generation.
- Attention is a **differentiable selection mechanism**.
- ▶ Large number of recent models, ranging between **1B and 1T parameters**.