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Practical details

Class overview

Lessons

1. Introduction, simple architectures (MLPs) and autodiff 09/02

2. Training pipeline, optimization and image analysis (CNNs) 16/02

3. Sequence regression (RNNs), stability and robustness 08/03

4. Generative models in vision and text (Transformers, GANs) 15/03
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Generative models

Generative models
Beyond classification tasks
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Generative models

What is a generative model?

Generative vs. discriminative
§ Discriminative tasks such as classification aim at separating data.

§ Generative tasks aim at creating new data.

ENSAE 2023-2024 4/53



Generative models

Examples of generative models

§ Image generation (face generation, deepfakes, ...).

source: https://this-person-does-not-exist.com/en
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Generative models

Examples of generative models

§ Image generation (face generation, deepfakes, ...).

§ Prompt-based image generation (Dalle2, Imagen, MidjourneyAI, ...).

source: MidjourneyAI. https://midjourney.com/

ENSAE 2023-2024 7/53

https://midjourney.com/


Generative models

Examples of generative models

§ Image generation (face generation, deepfakes, ...).
§ Prompt-based image generation (Dalle2, Imagen, MidjourneyAI, ...).
§ Text generation (Bert, GPT2, GPT3, ChatGPT, Bard, Sparrow, ...).

source: ChatGPT. https://chat.openai.com/
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Generative models

Neural architectures for generative tasks

Key aspects of a generative model

§ We want to output complex data (e.g. images, text, ...).

§ We want to sample random outputs from a learnt distribution.

§ Usually involves more difficult optimization problems than standard ERM.

§ How do we measure performance?

Three main approaches

1. Variational auto-encoders (VAEs)

2. Generative Adversarial Networks (GANs)

3. Score-based generative models / diffusion models
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Generating random variables

Generating random variables
Classical approaches to sampling probability distributions
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Generating random variables

Generative models

Approximating distributions with NNs

§ Intuition: How do we create models whose outputs are random variables?

§ Data: D̂n “ pX1, . . . , Xnq i.i.d. according to some target distribution D.

§ Objective: sample new elements X̃ „ D from the target distribution.

Extensions
§ Prompt-based models: one data distribution per input query. Equivalent to supervised
learning with a random output.

§ Learn a density function: some models also provide a density function.

No clear cut: classification tasks also generate probability distributions...
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Generating random variables

How to sample from a known distribution D?

Standard approaches

§ Parametric families of distributions: sampled by a simple function of a base
distribution. E.g. Gaussian X “ µ ` σY where Y „ N p0, 1q.

§ Inversion sampling: For 1D r.v., we have X “ F´1pY q where Y „ Upr0, 1sq is uniform
in r0, 1s and F is the cumulative distribution function of D.

§ Monte-Carlo Markov Chains: Start with a base distribution (e.g. Gaussian), and
iteratively refine it to get closer and closer to the target distribution D.

How to use it for generative models?

§ Parameter modelling: Learn the parameters pµ, σq “ gθpxq to generate N pµ, σq.

§ Transformation: generate with gθpY q „ D where Y „ N p0, Iq (VAEs, GANs).

§ Dynamics: Learn iterative refinements that transform N p0, Iq into D (diffusion).
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Variational Autoencoders

Variational Autoencoders (VAEs)
From compression to generation
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Variational Autoencoders

But first... what is an autoencoder?

§ Objective: Learn a compressed data representation in an unsupervised manner.

§ Idea: Map data points to themselves gθpxq “ x with small inner representation.
§ Loss: Let eθ, dθ1 be two NNs, we want to minimize Ep}X ´ dθ1peθpXqq}2q.
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Variational Autoencoders

But first... what is an autoencoder?

§ Compression: If latent space is smaller than input space, information is compressed.

§ Generation: We can sample from the latent space.
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Variational Autoencoders

Autoencoders in PyTorch

The simplest possible autoencoder with a single affine layer as encoder and as decoder:

class AutoEncoder(nn.Module):

def __init__(self, input_dim, encoding_dim):

super(AutoEncoder, self).__init__()

self.encoder = nn.Linear(input_dim, encoding_dim)

self.decoder = nn.Linear(encoding_dim, input_dim)

def forward(self, x):

encoded = self.encoder(x)

decoded = self.decoder(encoded)

return decoded
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Variational Autoencoders

Autoencoders in PyTorch

After training, we obtain:
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Variational Autoencoders

Representation learning with autoencoders

§ Interpolation in latent space: We can interpolate between two images x and y with

xα “ dθ1

´

α eθpxq ` p1 ´ αq eθpyq

¯

for α P r0, 1s.

§ Results: Interpolation between digits 2 and 9.

§ Better than in the pixel space, but not perfect still...
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Variational Autoencoders

Is this a good generative model?

§ Limitations: There is no constraint on the regularity of the latent space embedding.

source: https: // towardsdatascience. com/ understanding-variational-autoencoders-vaes-f70510919f73
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Variational Autoencoders

Variational Autoencoders (VAEs)

§ Objective: Regularize by forcing the embedding to be robust to noise.
§ Idea: The encoder returns the parameters pµx, σxq “ eθpxq of a Gaussian distribution.
We sample Zx „ N pµx, σxq and minimize

min
θ,θ1

1

n

n
ÿ

i“1

}xi ´ dθ1pZxiq}2 ` dKL

´

N pµxi , σxiq, N p0, Iq

¯

where dKLpp, qq “ EX„pplogpppXq{qpXqqq measures the ”distance” between p and q.
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Variational Autoencoders

Regularization with KL divergence

§ Benefits: Each image is pushed to be mapped to a normal distribution.
§ Sampling: We can sample new images with dθ1pZq where Z „ N p0, Iq.

source: https: // towardsdatascience. com/ understanding-variational-autoencoders-vaes-f70510919f73ENSAE 2023-2024 22/53
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Performance measures

Performance measures
When is our model good enough?

ENSAE 2023-2024 23/53



Performance measures

Comparing data distribution and generated distribution

§ Question: How should we measure distances between real and generated distributions?
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Performance measures

Likelihood of the data distribution

§ We already saw that we can train a probabilistic model by maximizing the likelihood of
the training data points (approach used by most of statistics!).

§ Equivalent to minimizing the negative log-likelihood:

min
θ

´

n
ÿ

i“1

log pθpxiq

where px1, . . . , xnq are the training data points and pθ is the density of the distribution.

§ Cons: Requires to have access to the density pθ. Can overfit training data.

§ This is equivalent to minimizing the Kullback-Leibler divergence dKLpp̂n, pθq, where:

dKLpp, qq “ E
ˆ

ln

ˆ

ppXq

qpXq

˙˙

where p̂n “ 1
n

ř

i δxi and X „ p.
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Performance measures

Other performance metrics

Wasserstein distance
§ Measures how similar are the two measures via evaluation functions:

dW pµ, νq “ sup
fPLip1

|EpfpXqq ´ EpfpY qq|

where X „ µ, Y „ ν and Lip1 is the space of 1-Lipschitz functions.

§ Measures are similar if there is no way to distinguish them with (Lipschitz) statistics.

§ Another (equivalent) definition via optimal transport.

Human evaluation
§ Compare the outputs and decide which generative model you prefer...

§ Limitations: subjective, and difficult to assess diversity.
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Generative Adversarial Networks

Generative Adversarial Networks (GANs)
Asking another NN if your NN is good enough
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Generative Adversarial Networks

Generative Adversarial Networks (Goodfellow et.al., 2014)

§ Idea: Use another NN (discriminator) to compare true and generated images.
§ Discriminator finds mistakes in the generation, and generator learns to fool the critic.
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Generative Adversarial Networks

Traning GANs: a min-max optimization problem

§ Generator: gθ generates a fake sample gθpZq with a Gaussian r.v. Z „ N p0, Iq.

§ Discriminator: dθ1 is a classifier and dθ1pxq is the probability for x to be a real sample.

§ Learning: gθ and dθ1 are learnt alternatively, i.e. one is fixed when the other is learnt.

§ Loss: For real images px1, . . . , xnq and generated images pgθpZ1q, . . . , gθpZnqq, we want

max
θ

min
θ1

Lpθ, θ1q “ ´
1

n

n
ÿ

i“1

log
´

dθ1pxiq
¯

` log
´

1 ´ dθ1pgθpziqq

¯

§ Interpretation: Discriminator minimizes its BCE loss, generator tries to maximize it.
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Generative Adversarial Networks

Recap

§ Generative models rely on learning to sample probability distributions.

§ VAEs use an Encoder-Decoder architecture to learn a low-dimensional latent
representation of the data distribution.

§ GANs use two adversarial networks trained alternatively (Generator and Discriminator).

§ To create images from low-dimensional vectors, we need to use transposed convolutions.

§ Training is very unstable, and requires lots of tricks in practice.
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Text generation (Transformers)

Understanding the Transformer architecture˚

State-of-the-art natural language processing models

˚...with the help of a Transformer architecture. ,
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Text generation (Transformers)

Introduction to Natural Language Processing (NLP)

Typical language tasks

§ Text to label: Sentiment analysis, text categorization, true/false question answering

§ Text to text: Translation, summarization, correction (grammar), question answering,
chatbots, content creation, auto-completion

§ Others: speech to text, text to speech / image / video.
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Text generation (Transformers)

Auto-completion is all you need...!

Next word prediction

§ Objective: Guess the next character/word/token (this is a classification task!).

§ Definition: Let D be a finite dictionary (i.e. set) of characters/words/tokens, and
pui1, . . . , u

i
tqiPJ1,nK P Dtˆn a training dataset of sequences (e.g. text doc.) of length t.

§ Task: Let pu1, . . . , utq P a sequence. We want to predict ut given pu1, . . . , ut´1q.

“Hello, my name is Sam. How are” Ñ “you”
“To be or not to” Ñ

“be”

“I am playing in the” Ñ

“garden”
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Text generation (Transformers)

Early generative models: statistical models

A simple Markov model (Shannon, 1948)

§ Idea: Learn the transition probabilities from one word to another.

§ Method: Learn the probability pvpuq of a token u P D appearing after the token u P D.

source: A Mathematical Theory of Communication (Shannon, 1948)
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Text generation (Transformers)

Early generative models: RNNs

Recurrent Neural Networks
§ Hidden variable dynamics: ht “ fW pxt, ht´1q

§ Example: ht “ ReLUpWhh ht´1 ` Wxh xtq

§ Prediction: next token xt`1 is randomly sampled according to the probability

phtpuq “ SoftmaxupWhp ht ` Wxp xtq

source: http: // colah. github. io/ posts/ 2015-08-Understanding-LSTMs/
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Text generation (Transformers)

Generative models: general form

Next token predictors

§ In general, we have a model that returns a probability distribution on the dictionary given
the K last tokens of an input sequence pu1, . . . , ut´1q P Dpt´1qˆn:

@u P D, pput´K ,...,ut´1qpuq “ gθpput´K , . . . , ut´1qqu

Text generation

§ We sample each token in the sequence iteratively given the K previous tokens.

Limitations
§ If K is small, difficult to deal with long-term dependencies.

§ Sequential by construction. Hard to parallelize.
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Text generation (Transformers)

Attention layers: the softmax family

Softmax probabilities

§ Idea: Create differentiable selection mechanisms to identify valuable sequence elements.

§ Definition: Let x “ x1, . . . , xn be scores associated to n items, then

Softmaxipxq “
exi

řn
j“1 e

xj

§ Properties: We have Softmaxipxq P r0, 1s and
ř

i Softmaxipxq “ 1.

Applications

§ Cross-entropy: We have ℓCEpy, y1q “ ´ logpSoftmaxy1pyqq.

§ Max: We can return a ”soft max” with
ř

i Softmaxipxqxi or logp
řn

j“1 e
xj q.

§ Argmax: We can select the item with highest score si with
ř

i Softmaxipsqxi.
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Text generation (Transformers)

Attention layers: first use in translation (Bahdanau et.al., 2015)

§ Idea: Align the words between two different languages using attention.

§ Encoding: For an input sentence (e.g. in English) pu1, . . . , uT q, we use an LSTM to
compute hidden vectors representing each word/token ph1, . . . , hT q.

§ Decoding: We then compute recursively the hidden state of the translated sentence
st “ fpst´1, yt´1, ctq where yt´1 is the previous token, and ct is a context vector.

§ Context: Using attention, we select the token element of the original sentence

ct “

T
ÿ

i“1

Softmaxipapst´1, yt´1qqhi

§ Prediction: We sample according to yi „ gpyi´1, si, ciq.
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Text generation (Transformers)

Attention layers: first use in translation (Bahdanau et.al., 2015)

source: Neural Machine Translation by Jointly Learning to Align and Translate (Bahdanau et.al., 2015)
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Text generation (Transformers)

Attention layers in Transformers

Attention is all you need (Vaswani et.al., 2017)

§ Idea: Select values by matching keys and queries.

§ Example: Return a video (value) for a search (query) matching the video’s title (key).

§ Definition: For queries Q P RkˆS , keys K P RkˆT and values V P RdoutˆT , return,
@s P J1, SK,

Ys “

T
ÿ

t“1

SoftmaxtpscorepQs,KqqVt

§ Usual score: Dot-product scorepQs,Kq “
QJ

s K
?
k
.
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Text generation (Transformers)

(Self-)attention layers in Transformers

Self-attention
§ Idea: We keep keys, values and pairs in a single input tensor X.

§ Definition: Let Q “ WQX, K “ WKX and V “ WV X, then

Ys “

T
ÿ

t“1

Softmaxt

ˆ

QJ
s K?
k

˙

Vt

§ We start with an input tensor X P RdinˆT , and return an output tensor Y P RdoutˆT with
a choice of weight parameters WQ P Rkˆdin ,WK P Rkˆdin ,WV P Rdoutˆdin .

Multi-head attention
§ As for channels in convolution layers, we perform H parallel self-attention layers, and
combine them with a linear layer. Usual choice: take din “ dout ¨ H.
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Text generation (Transformers)

Multi-head attention

source: Attention is all you need (Vaswani et.al., 2017)
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Text generation (Transformers)

The Transformer architecture (Vaswani et.al., 2017)

source: Attention is all you need (Vaswani et.al., 2017)
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Text generation (Transformers)

Positional encoding

Limitations of the multi-head attention block

§ Time complexity: Quadratic w.r.t. sequence length, OpmT 2kq to generate m tokens.

§ Permutation-invariance: All sequence elements are treated equally... order is lost!

Positional encoding

§ Idea: We add the position t to each input token ut... but in a more fancy way.

§ Implementation: Let vt “ ut ` pt, where

pt “

ˆ

cos

ˆ

t

100002i{k

˙

, sin

ˆ

t

100002i{k

˙˙

iPJ1,k{2K

§ Properties: pt uniquely defines t, but is better to encode translations and periodicity.
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Text generation (Transformers)

Positional encoding: parallel computations

source: https: // dataflowr. github. io/ website/ modules/ 12-attention/
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Text generation (Transformers)

Layer normalization

Idea
§ Same as batch normalization, but normalized per layer instead of per batch.

§ Ensures that all elements in the sequence have approximately the same amplitude.

Definition
§ If pxiqi is a batch of b inputs (to the layer), then the output is:

yi “
xi ´ E
?
V ` ε

¨ γ ` β

where E “ 1
d

ř

i xi and V “ 1
d

ř

ipxi ´ Eq2 (coord.-wise), γ and β are learnable vectors.
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Text generation (Transformers)

The GPT architecture (Radford et.al., 2018)

source: Improving Language Understanding by Generative Pre-Training (Radford et.al., 2018)

ENSAE 2023-2024 48/53



Text generation (Transformers)

The LLM family: model size

Human brain: est. an average of 86B neurons and 100T synapses.

source: https: // medium. com/ @harishdatalab/ unveiling-the-power-of-large-language-models-llms-e235c4eba8a9
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Text generation (Transformers)

The LLM family: recent models

source: https: // wandb. ai/ vincenttu/ blog_ posts/ reports/ A-Survey-of-Large-Language-Models--VmlldzozOTY2MDM1
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Text generation (Transformers)

The LLM family: architecture details

source: https: // wandb. ai/ vincenttu/ blog_ posts/ reports/ A-Survey-of-Large-Language-Models--VmlldzozOTY2MDM1
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Text generation (Transformers)

To go further

What we didn’t discuss
§ Masking: to preserve causality.

§ Alignment Tuning: Reinforcement Learning with Human Feedback (RHLF).

§ Fast fine-tuning: efficient fine-tuning with low rank approximations (LoRA and QLoRA).

§ Improving model scalability: Mixture of Experts (MoE) and Mamba.

§ Training details of LLMs: a nice survey on traning hyper-param. and technical details:
https://wandb.ai/vincenttu/blog_posts/reports/

A-Survey-of-Large-Language-Models--VmlldzozOTY2MDM1

§ Model performance and evaluation: many benchmark tasks, but can overfit.
Generation quality: https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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Text generation (Transformers)

Recap

§ Transformers = Attention (+ LayerNorm + Residuals + MLPs + Positional encoding).

§ Text generation using a simple next token prediction approach.

§ Encoder-Decoder architecture for translation, only Decoder for generation.

§ Attention is a differentiable selection mechanism.

§ Large number of recent models, ranging between 1B and 1T parameters.
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