
Mathematics of Deep Learning MASH 2023-2024

MDL - Homework
06/02/2024

Instructions: Please send your solution to the following exercises before 20/02/2024 end of day
to the email address: kevin.scaman@inria.fr.

Exercise 1: Parallel automatic differentiation

We consider a sequential neural network of the form gθ(x) = g(L)(x, θ) where g(0)(x, θ) = x and
∀l ∈ J1, LK,

g(l)(x, θ) = f (l)
(
g(l−1)(x, θ), θ(l)

)
,

where θ = (θ(1), . . . , θ(L)), θ(l) ∈ Rp(l)

and f (l) : Rd(l−1) × Rp(l) → Rd(l)

. When the output
dimension d(L) = 1, backpropagation is very efficient w.r.t. computation time. Our objective is to
propose more efficient algorithms when we have access to a large number of parallel workers. For
simplicity, we will consider that all layer widths are equal d(l) = w for l ∈ J1, L− 1K, and d(L) = 1.

Q1: What is the computational complexity of the backpropagation algorithm (up to a multiplica-
tive constant)?

Q2: Write the derivative of the model g(L) w.r.t. the parameter θ(l) for l ∈ J1, LK as a product of
L− l + 1 matrices.

Q3: Show that a product of K matrices can be computed in ⌈ln2(K)⌉ iterations using parallel
workers. What is the computational complexity (up to a multiplicative constant)? How
many workers are necessary?

Q4: Propose an algorithm to compute the gradient of the model g(L) w.r.t. any parameter θ(l)

in time proportional to ⌈ln2(L − l + 1)⌉. What is the computational complexity (up to a
multiplicative constant)? When is this algorithm faster than backpropagation?

Q5: If all partial derivatives w.r.t. θ(l) are computed in parallel, how many workers are necessary?

Q6: Show that most computations can be reused for multiple partial derivatives (identical prod-
ucts appearing in the derivatives), and propose an algorithm taking advantage of this fact.
Show that the number of workers needed for this algorithm is linear in L instead of quadratic,
while still requiring a computation time in O(ln2(L)).

Exercise 2: Non-smooth optimization via random noise

Let L : Rd → R be a differentiable objective function lower bounded by L⋆ ∈ R. We first assume
that L is β-smooth and µ-PL. Let (θt)t∈N be generated as follows, with η < 1

β :

θt+1 = θt − ηGt ,

for stochastic gradients Gt verifying E(Gt) = ∇L(θt) and E(∥Gt −∇L(θt)∥2) ≤ σ2.

Q7: Provide an upper bound on the optimization error in expectation E(L(θt) − L⋆). What is
the optimal step size, and which convergence rate do you obtain?
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Q8: Is the objective function used to train a deep learning model always smooth? If not, give a
counter-example.

We now consider that L is no longer β-smooth, but only L-Lipschitz (and µ-PL). For γ > 0 we
define the function Lγ as:

Lγ(θ) = E(L(θ + γξ)) , where ξ ∼ N (0, Id) , x ∈ Rd .

Q9: Show that Lγ is an approximation of L, and in particular ∀θ ∈ Rd, |Lγ(θ)− L(θ)| ≤ Lγ
√
d.

Q10: Using integration by parts, show that ∇Lγ(θ) = 1
γE(L(θ + γX)X).

Q11: Use this result to show that, ∀v, θ, θ′ ∈ Rd, |⟨∇Lγ(θ)−∇Lγ(θ′), v⟩| ≤ L∥v∥
γ .

Q12: Conclude on the smoothness of Lγ and find its smoothness constant.

Q13: We now assume that var(∇L(θ + γX)) ≤ cE(∥∇L(θ + γX)∥2) where c ∈ (0, 1). Show that
Lγ verifies the (1− c)µ-PL condition.

Q14: Can the gradient ∇Lγ(θ) be estimated by a fixed number K of samples? What is the variance
of this estimator?

Q15: Finally, propose a minimization method for L using K samples of the gradient ∇L(θt+γξt,k)
at each iteration t ≥ 0, where (ξt,k)k∈J1,KK ∼ N (0, Id) are i.i.d. Gaussian random variables.
What is the optimal step size, and which convergence rate do you obtain?
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