MDL - TD1
09/01/2024

Exercise 1: Properties of MLPs

Q1: The number of parameters of a model g_{θ} is the number of coordinates d of $\theta \in \mathbb{R}^{d}$. How many parameters has an MLP of depth L and widths $d^{(l)}$ for $l \in \llbracket 0, L \rrbracket$?
Q2: We now assume that all widths are equal $d^{(l)}=d$. How does the number of parameters scale with the width and depth?
Q3: Show that, for two differentable functions f, g, we have $J_{f \circ g}(x)=J_{f}(g(x)) J_{g}(x)$.
Q4: Show that the Jacobian of an MLP is

$$
J_{g_{\theta}}(x)=W^{(L)} D^{(L-1)} W^{(L-1)} D^{(L-2)} \ldots W^{(2)} D^{(1)} W^{(1)}
$$

where $D^{(l)}=\operatorname{diag}\left(\sigma^{\prime}\left(g_{\theta}^{(2 l-1)}(x)\right)\right)$ and $g_{\theta}^{(2 l-1)}(x)$ is the input of the $l^{t h}$ activation.

Exercise 2: Algebraic strucutre of ReLU networks

Q5: Show that, for any $L \geq 1$, the identity $g(x)=x$ is a ReLU networks of depth L.
Q6: Show that for $f, g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D}$ two MLPs, $f+g$ is still a ReLU network.
Q7: Show that for $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ and $g: \mathbb{R}^{q} \rightarrow \mathbb{R}^{r}$ two ReLU networks, $g \odot f$ is still a ReLU network.

Q8: Are these properties specific to ReLU activations?

Exercise 3: Concentration inequalities

Q9: (Markov's inequality) Let $X \geq 0$ be a positive random variable. Show that, $\forall a>0, \mathbb{P}(X \geq$ $a) \leq \mathbb{E}(X) / a$.

Q10: (Chernoff's bound) Let X be a real random variable. Using Markov's inequality, show that, $\forall a \in \mathbb{R}$ and $t>0, \mathbb{P}(X \geq a) \leq \mathbb{E}\left(e^{t X}\right) e^{-t a}$. Which probability distribution has exponential probability tails?

Q11: (Hoeffding's inequality) Let X_{1}, \ldots, X_{n} be n i.i.d. bounded random variable such that $\forall i_{i} n \llbracket 1, n \rrbracket, \mathbb{E}\left(X_{i}\right)=0$ and $\left|X_{i}\right| \leq B$. Using Chernoff's inequality and Hoeffding's lemma (i.e. that $\left.\forall t \in \mathbb{R}, \mathbb{E}\left(e^{t X_{1}}\right) \leq e^{t^{2} B^{2} / 2}\right)$, show that, $\forall a>0, \mathbb{P}\left(\sum_{i} X_{i} \geq a\right) \leq e^{\frac{-a^{2}}{2 n B^{2}}}$. Which distribution has doubly exponential tails? How is this result related to the CLT?
Q12: Let $\theta \in \mathbb{R}^{d}$ be a fixed parameter, g_{θ} a machine learning model, $\left(X_{i}, Y_{i}\right)_{i \in \llbracket 1, n \rrbracket}$ i.i.d. random data samples drawn according to a data distribution \mathcal{D}, and ℓ a loss function bounded uniformly by a constant $B>0$. Then, let $\mathcal{L}(\theta)=\mathbb{E}\left(\ell\left(g_{\theta}(X), Y\right)\right)$ be the risk and $\hat{\mathcal{L}}_{n}(\theta)=$ $\frac{1}{n} \sum_{i} \ell\left(g_{\theta}\left(X_{i}\right), Y_{i}\right)$ the empirical risk of the model g_{θ} on the data distribution \mathcal{D}. Using Hoeffding's inequality, show that, $\forall \delta \in(0,1)$, with probability at least $1-\delta$,

$$
\left|\hat{\mathcal{L}}_{n}(\theta)-\mathcal{L}(\theta)\right| \leq B \sqrt{2 n \ln \frac{1}{\delta}}
$$

How can this result be useful for learning purposes?

