MDL - TD1

09/01/2024

Exercise 1: Properties of MLPs

- **Q1:** The number of parameters of a model g_{θ} is the number of coordinates d of $\theta \in \mathbb{R}^d$. How many parameters has an MLP of depth L and widths $d^{(l)}$ for $l \in [0, L]$?
- **Q2:** We now assume that all widths are equal $d^{(l)} = d$. How does the number of parameters scale with the width and depth?
- **Q3:** Show that, for two differentiable functions f, g, we have $J_{f \circ q}(x) = J_f(g(x))J_q(x)$.
- **Q4:** Show that the Jacobian of an MLP is

 $J_{aa}(x) = W^{(L)} D^{(L-1)} W^{(L-1)} D^{(L-2)} \dots W^{(2)} D^{(1)} W^{(1)}$

where $D^{(l)} = \text{diag}(\sigma'(g_{\theta}^{(2l-1)}(x)))$ and $g_{\theta}^{(2l-1)}(x)$ is the input of the l^{th} activation.

Exercise 2: Algebraic structure of ReLU networks

- **Q5:** Show that, for any $L \ge 1$, the identity g(x) = x is a ReLU networks of depth L.
- **Q6:** Show that for $f, g : \mathbb{R}^d \to \mathbb{R}^D$ two MLPs, f + g is still a ReLU network.
- **Q7:** Show that for $f : \mathbb{R}^p \to \mathbb{R}^q$ and $g : \mathbb{R}^q \to \mathbb{R}^r$ two ReLU networks, $g \odot f$ is still a ReLU network.
- **Q8:** Are these properties specific to ReLU activations?

Exercise 3: Concentration inequalities

- **Q9:** (Markov's inequality) Let $X \ge 0$ be a positive random variable. Show that, $\forall a > 0$, $\mathbb{P}(X \ge a) \le \mathbb{E}(X)/a$.
- **Q10:** (*Chernoff's bound*) Let X be a real random variable. Using Markov's inequality, show that, $\forall a \in \mathbb{R} \text{ and } t > 0, \mathbb{P}(X \ge a) \le \mathbb{E}(e^{tX})e^{-ta}$. Which probability distribution has exponential probability tails?
- **Q11:** (Hoeffding's inequality) Let X_1, \ldots, X_n be n i.i.d. bounded random variable such that $\forall i_i n \llbracket 1, n \rrbracket, \mathbb{E}(X_i) = 0$ and $|X_i| \leq B$. Using Chernoff's inequality and Hoeffding's lemma (i.e. that $\forall t \in \mathbb{R}, \mathbb{E}(e^{tX_1}) \leq e^{t^2 B^2/2}$), show that, $\forall a > 0, \mathbb{P}(\sum_i X_i \geq a) \leq e^{\frac{-a^2}{2nB^2}}$. Which distribution has doubly exponential tails? How is this result related to the CLT?
- **Q12:** Let $\theta \in \mathbb{R}^d$ be a fixed parameter, g_θ a machine learning model, $(X_i, Y_i)_{i \in [\![1,n]\!]}$ i.i.d. random data samples drawn according to a data distribution \mathcal{D} , and ℓ a loss function bounded uniformly by a constant B > 0. Then, let $\mathcal{L}(\theta) = \mathbb{E}(\ell(g_\theta(X), Y))$ be the risk and $\hat{\mathcal{L}}_n(\theta) = \frac{1}{n} \sum_i \ell(g_\theta(X_i), Y_i)$ the empirical risk of the model g_θ on the data distribution \mathcal{D} . Using Hoeffding's inequality, show that, $\forall \delta \in (0, 1)$, with probability at least 1δ ,

$$\left|\hat{\mathcal{L}}_{n}(\theta) - \mathcal{L}(\theta)\right| \leq B\sqrt{2n\ln\frac{1}{\delta}}$$

How can this result be useful for learning purposes?