MDL - TD4

13/02/2024

Exercise 1: Sawtooth and the power of depth

For L, W integers and σ the ReLU function, we denote by $\mathcal{N}(\sigma, L, W)$ the set of MLPs with depth at most L and width at most W. The classification power of a class of functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$ is measured by the classification error, given a set of n points $z=\left(x_{i}, y_{i}\right)_{1 \leq i \leq n}$:

$$
\mathcal{R}_{z}(f)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{y_{i} \cdot f\left(x_{i}\right)>0\right\}
$$

where $y_{i} \in\{-1,1\}$. The classification power of a class of functions \mathcal{F} is then defined as $\min _{f \in \mathcal{F}} \mathcal{R}_{z}(f)$.

Q1: For $p \in \mathbb{N}$, construct a function $f_{p}:[0,1] \rightarrow \mathbb{R}$ that is piecewise linear with 2^{p} affine regions, that takes $2^{p-1}+1$ times the value 0 and 2^{p-1} times the value 1 in $[0,1]$, and that can be expressed as a neural net with depth $p+1$ and width 2 .

Q2: Use the above result to show that, for $n=2^{p}$ and $z=\left(\frac{i}{n},(-1)^{i}\right)_{0 \leq i \leq n} \in([0,1] \times\{-1,1\})^{n}$,

$$
\min _{f \in \mathcal{N}(\sigma, p+1,2)} \mathcal{R}_{z}(f)=0
$$

Q3: Let $f \in \mathcal{N}(\sigma, L, W)$ for $L, W \in \mathbb{N}^{*}$. Upper bound the number of affine regions of f.
Q4: Show that, for any L, W,

$$
\min _{f \in \mathcal{N}(\sigma, L, W)} \mathcal{R}_{z}(f) \geq \frac{1}{2}-\frac{(W+1)^{L-1}}{2 n}
$$

Q5: Conclude in terms of power of depth for neural networks.

Exercise 2: Counting triangles with graph neural networks

We recall that a graph neural network (GNN) is a model that takes an undirected graph $G=(V, E)$ with node set V and edge set E as input and maps it to a vector $u_{G} \in \mathbb{R}^{d}$ using an iterative procedure composed of three steps:

1. Initialization: For each node $i \in V$, we initialize the node attributes $u_{i, 0}=0 \in \mathbb{R}^{d}$.
2. Aggregation: For each node $i \in V$ and model layer $l \in\{1, \ldots, L-1\}$,

$$
u_{i, l+1}=\phi_{l}\left(u_{i, l},\left\{u_{j, l}\right\}_{\{i, j\} \in E}\right) .
$$

3. Readout: $u_{G}=\psi\left(\left\{u_{i, L}\right\}_{i \in V}\right)$.
where the functions $\phi_{1}, \ldots, \phi_{L}$ and ψ are permutation invariant neural networks.

Q6: Give a simple example for the functions $\phi_{1}, \ldots, \phi_{L}$ and ψ that count the number of nodes of the input graph.

Q7: Give a simple example for the functions $\phi_{1}, \ldots, \phi_{L}$ and ψ that count the number of edges of the input graph.

Q8: Show that a GNN (as defined above) cannot count the number of triangles of a graph, i.e. there exists graphs G, G^{\prime} such that their number of triangles differ and, for any GNN f, we have $f(G)=f\left(G^{\prime}\right)$.

Q9: Conclude on the universality of GNNs.

