MDL - TD4

13/02/2024

Exercise 1: Sawtooth and the power of depth

For L, W integers and σ the ReLU function, we denote by $\mathcal{N}(\sigma, L, W)$ the set of MLPs with depth at most L and width at most W. The classification power of a class of functions $\mathbb{R}^d \to \mathbb{R}$ is measured by the classification error, given a set of n points $z = (x_i, y_i)_{1 \le i \le n}$:

$$\mathcal{R}_z(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{y_i \cdot f(x_i) > 0\},\$$

where $y_i \in \{-1, 1\}$. The classification power of a class of functions \mathcal{F} is then defined as $\min_{f \in \mathcal{F}} \mathcal{R}_z(f)$.

- **Q1:** For $p \in \mathbb{N}$, construct a function $f_p : [0,1] \to \mathbb{R}$ that is piecewise linear with 2^p affine regions, that takes $2^{p-1} + 1$ times the value 0 and 2^{p-1} times the value 1 in [0,1], and that can be expressed as a neural net with depth p + 1 and width 2.
- **Q2:** Use the above result to show that, for $n = 2^p$ and $z = \left(\frac{i}{n}, (-1)^i\right)_{0 \le i \le n} \in \left([0, 1] \times \{-1, 1\}\right)^n$,

$$\min_{f \in \mathcal{N}(\sigma, p+1, 2)} \mathcal{R}_z(f) = 0.$$

Q3: Let $f \in \mathcal{N}(\sigma, L, W)$ for $L, W \in \mathbb{N}^*$. Upper bound the number of affine regions of f.

Q4: Show that, for any L, W,

$$\min_{f \in \mathcal{N}(\sigma,L,W)} \mathcal{R}_z(f) \ge \frac{1}{2} - \frac{(W+1)^{L-1}}{2n}$$

Q5: Conclude in terms of power of depth for neural networks.

Exercise 2: Counting triangles with graph neural networks

We recall that a graph neural network (GNN) is a model that takes an undirected graph G = (V, E) with node set V and edge set E as input and maps it to a vector $u_G \in \mathbb{R}^d$ using an iterative procedure composed of three steps:

- 1. Initialization: For each node $i \in V$, we initialize the node attributes $u_{i,0} = 0 \in \mathbb{R}^d$.
- 2. Aggregation: For each node $i \in V$ and model layer $l \in \{1, \ldots, L-1\}$,

$$u_{i,l+1} = \phi_l \left(u_{i,l}, \{ u_{j,l} \}_{\{i,j\} \in E} \right)$$
.

3. **Readout:** $u_G = \psi(\{u_{i,L}\}_{i \in V}).$

where the functions ϕ_1, \ldots, ϕ_L and ψ are permutation invariant neural networks.

Q6: Give a simple example for the functions ϕ_1, \ldots, ϕ_L and ψ that count the number of nodes of the input graph.

- **Q7:** Give a simple example for the functions ϕ_1, \ldots, ϕ_L and ψ that count the number of edges of the input graph.
- **Q8:** Show that a GNN (as defined above) cannot count the number of triangles of a graph, i.e. there exists graphs G, G' such that their number of triangles differ and, for any GNN f, we have f(G) = f(G').
- **Q9:** Conclude on the universality of GNNs.