MDL - TD6

27/02/2024

Exercise 1: Distances between distributions

Q1: Show that the total variation distance $d_{\text{TV}}(\mu, \nu)$ defined as $d_{\text{TV}}(\mu, \nu) = ||P - Q||_1$ where P and Q are the densities of μ and ν , also verifies:

$$d_{\scriptscriptstyle \mathrm{TV}}(\mu,\nu) = \max_{f \in L^{\infty}} \mathbb{E}[f(X) - f(Y)],$$

where $(X, Y) \sim (\mu, \nu)$ and L^{∞} is the set of functions bounded by 1.

Q2: Show that the Wasserstein distance $d_{w}(\mu, \nu)$ defined as $d_{w}(\mu, \nu) = \max_{f \in L^{1}} \mathbb{E}[f(X) - f(Y)]$ where L^{1} is the set of 1-Lipshitz functions, verifies:

$$d_{\mathbf{w}}(\mu,\nu) \leq \inf_{(X,Y)\in\Pi(\mu,\nu)} \mathbb{E}(\|X-Y\|),$$

where $\pi(\mu, \nu)$ is the set of couplings (X, Y) such that $X \sim \mu$ and $Y \sim \nu$.

Q3: Let μ be the law of the uniform random variable over the hypercube $\{0, 1\}^d$. For $X_1, \ldots, X_n \sim \mu$, let $\hat{\mu}_n$ be the empirical distributions over these *n* samples. Show that

$$d_{\mathrm{w}}(\mu, \hat{\mu}_n) \ge 1 - \frac{n}{2^d}.$$