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Introduction and motivation

Timeline
Dates: 09/01/2024 - 12/03/2023 (8h30 - 11h45)
Format: 8 classes (1h30 class + 1h30 TDs), 1 Exam (19/03, 8h30 - 10h30)

Validation
One homework on 06/02. Deadline: 20/02.
One exam on the 19/03.

Contact

Email: kevin.scaman@inria.fr
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Introduction and motivation

Overall objective
Explore the mathematical aspects of deep learning.

Understand why deep learning architectures work so well in practice.
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Introduction and motivation

Overall objective
Explore the mathematical aspects of deep learning.

Understand why deep learning architectures work so well in practice.

Today's objective
Understand what is deep learning.
Set a mathematical framework for our analysis.

Learn about simple neural networks: Multi-layer perceptrons (MLP).
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Introduction and motivation

What is Deep Learning?
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Introduction and motivation

First, what are neural networks?
The notion changed over the last 8 decades...!
From early neural networks imitating real neurons...

To highly complex architectures with multiple sub-modules.

Multi-Layer Perceptron AlphaFold
(Rumelhart, Hinton, Williams, 75) (Jumper et.al., 2021)
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Introduction and motivation
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Introduction and motivati

Image Image Text Board games Strategy games Code Protein
classification generation generation (Go, chess) (Starcraft, Dota2) generation folding
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Introduction and motivation

Thousands of applications
Voice/audio/music generation: MusicGen, MusicLM, MusicLDM, Jukebox, HeyGen
Voice to text: Whisper
Image generation/deep-fakes: Dalle-3, MidJourney, Stable Diffusion XL
Text generation/chatbots: ChatGPT, GPT4, LLama, Claude, Mistral
Video generation: Make-a-video, HeyGen
Code generation/automatic app creation: Codex, Code LLama, phi-1.5, AutoGPT
Strategic games (Go, chess, Starcraft, diplomacy): AlphaZero, LeelaChess, Cicero
Autonomous driving
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Introduction and motivation

Images generated from prompts using MidJourney (https.//www.midjourney.com/)
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Introduction and motivation

What do you need to create a DL architecture?

Know how to encode/decode data

Data loader, data augmentation, data handling during training, mini-batch, ...
Encoding layers, one-hot, tokenization, embeddings, ...
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What do you need to create a DL architecture?

Know how to encode/decode data
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Know how to create a neural network

Different types of layers, attention mechanism, batch normalization, ...
Multiple architectures: MLPs, RNNs, CNNs, GNNs, Transformers, ...
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Introduction and motivation

What do you need to create a DL architecture?

Know how to encode/decode data

Data loader, data augmentation, data handling during training, mini-batch, ...
Encoding layers, one-hot, tokenization, embeddings, ...

Know how to create a neural network

Different types of layers, attention mechanism, batch normalization, ...
Multiple architectures: MLPs, RNNs, CNNs, GNNs, Transformers, ...

Know how to train the neural network

Optimization perspective, auto-diff, SGD, Adam, momentum, ...
Weight initialization, loss functions, scheduling, hyper-parameter optimization...
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Introduction and motivation

Yann LeCun
@ylecun

Some folks still seem confused about what deep
learning is. Here is a definition:

DL is constructing networks of parameterized
functional modules & training them from examples
using gradient-based optimization....
facebook.com/722677142/post...

Traduire le Tweet

4:32 PM - 24 déc. 2019 - Facebook
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Introduction and motivation

Five decades of research in machine learning

Multi-Layer Perceptron AlphaFold
(Rumelhart, Hinton, Williams, 75) (Jumper et.al., 2021)
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Introduction and motivation

Five decades of research in machine learning
CPUs/GPUs/storage developed for other purposes
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Introduction and motivation

Five decades of research in machine learning
CPUs/GPUs/storage developed for other purposes

lots of data from “the internet”

tools and culture of collaborative and reproducible science

f theano EﬁK
PYTORCH Sate 1o
gensim spaCy
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Introduction and motivation

Five decades of research in machine learning
CPUs/GPUs/storage developed for other purposes

lots of data from “the internet”

tools and culture of collaborative and reproducible science

resources and efforts from large corporations

f theano EmK
PYTORCH Sate 1o

gensim spaCy
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Machine Learning pipeline

Machine Learning pipeline

A short recap
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Machine Learning pipeline

Typical binary classification task. Objective is to distinguish cat images from dog images.
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Machine Learning pipeline

Output class is represented as a 2d vector ((0,1) for "cat” and (1,0) for "dog").

X€eR? y € RC
| Pre-processi » Neural network =»] Post-processi » «cat»
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Machine Learning pipeline

Image features (sift, wavelets,...) are extracted and given as input to the model.

X € R?

Linear model

y € R¢

Post-

Feature extraction

(sift descriptors, edges, fourier transform...)

Maximum scoring class

» «cat»
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Machine Learning pipeline

The model makes a prediction ("cat” or "dog") for a given image.

X € R?

Linear model

y € R¢

Post-

Feature extraction

(sift descriptors, edges, fourier transform...)

Maximum scoring class

» «cat»
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Machine Learning pipeline

If the prediction is false, the model updates its parameters to improve its prediction.

X eR?

A
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y € R¢

Linear model > Post

Feature extraction

(sift descriptors, edges, fourier transform...)
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Adjusting the model (optim. step)
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Machine Learning pipeline

In deep learning, we can train the whole pipeline using automatic differentiation.
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Machine Learning pipeline

Data distribution

Let X', ) be an input and output space and D a distribution over (X,)). Then, we denote
our (test) input/output pair as
(X,Y)~D
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Machine Learning pipeline

Data distribution

Let X', ) be an input and output space and D a distribution over (X,)). Then, we denote
our (test) input/output pair as
(X,Y)~D

Risk minimization (a.k.a. supervized ML)

The objective of risk minimization is to find a minimizer 6* € R? of the optimization problem

min E(£(gy(X),Y))

where ¢ : Y2 — R is a loss function and gy : X — ) a model parameterized by § € RP.
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Machine Learning pipeline

Data distribution

Let X', ) be an input and output space and D a distribution over (X,)). Then, we denote
our (test) input/output pair as
(X,Y)~D

Risk minimization (a.k.a. supervized ML)

The objective of risk minimization is to find a minimizer 6* € R? of the optimization problem

min E(¢(g5(X),Y))
where ¢ : Y2 — R is a loss function and gy : X — ) a model parameterized by § € RP.

The target loss (e.g. accuracy) may be hard to train, and can thus be different from
the one used as objective during training!
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Machine Learning pipeline

> Input data: X € [0,255]“*"*3 are images encoded as tensors (i.e. high-dim. matrices)
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Machine Learning pipeline

Input data: X € [0,255]“*"*3 are images encoded as tensors (i.e. high-dim. matrices)

Output data: Y € R? are classes, one-hot encoded (i.e. Y; = 1 iff i is the true class).
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Machine Learning pipeline

Input data: X € [0,255]“*"*3 are images encoded as tensors (i.e. high-dim. matrices)
Output data: Y € R? are classes, one-hot encoded (i.e. Y; = 1 iff i is the true class).

Training data: Image-label pairs (71, y1)ie[1,n) (7 number of data points).
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Machine Learning pipeline

Input data: X € [0,255]“*"*3 are images encoded as tensors (i.e. high-dim. matrices)
Output data: Y € R? are classes, one-hot encoded (i.e. Y; = 1 iff i is the true class).
Training data: Image-label pairs (71, y1)ie[1,n) (7 number of data points).

Model: g5 : X — (0, f(X)), where f(X) e R are pre-computed features and § € RF".

Loss function (test): /(y,y’) = 1{argmax; y; = argmax; y;} (accuracy)

Loss function (train): ((y,y’) = — >, y;In (exp(yi)/Zj exp(yj)> (cross entropy)
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Machine Learning pipeline

Empirical risk minimization
Let (z;, yi)ie[[l,n]] be a collection of n observations drawn independently according to D.
Then, the objective of empirical risk minimization (ERM) is to find a minimizer 6,, € R? of

mln_ZE 90 mz yz)

0eRP N,
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Machine Learning pipeline

Empirical risk minimization
Let (z;, yi)ie[[l,n]] be a collection of n observations drawn independently according to D.
Then, the objective of empirical risk minimization (ERM) is to find a minimizer 6,, € R? of

min — Z (go(z;)
6ERP T 90 i yz

Optimization by gradient descent
We can minimize this loss by iterating
Opy1 =0 — UVﬁn(Gt)

where 77 > 0 is a fixed step-size and £, (#) = LS 0(go(x;), ;) is our objective.
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Machine Learning pipeline

* In its simplest form, the accuracy is ¢(y,y) = 1{y # y'}.

MASH Master 2, PSL Mathematics of Deep Learning, 2024 24/31



Machine Learning pipeline

In its simplest form, the accuracy is {(y,y’) = 1{y # y'}.

For classification tasks, we usually use Y = R where C is the number of classes, and
L(y,y') = 1{argmax, y; = argmax; y;} (top-1 accuracy) or,

Ly, y')=—>,y;In (exp(yi)/zj exp(yj)> (cross entropy).
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Machine Learning pipeline

In its simplest form, the accuracy is /(y,y') = 1{y # y'}.
For classification tasks, we usually use Y = R where C is the number of classes, and

L(y,y') = 1{argmax, y; = argmax; y;} (top-1 accuracy) or,

Ly, y')=—>,y;In (exp(yi)/zj exp(yj)> (cross entropy).

For regression tasks, we usually use Y = R? and
Uy,y') = ly —y'I3 = Xi(y: — y;)? (mean square error) or,
Ly, y") =y —v'|1 = 2 lyi — ¥;| (mean absolute error).
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Machine Learning pipeline

Learning is rephrased as minimizing a loss function over the training dataset.
Loss is typically cross entropy for classification and MSE for regression.
Training achieved by (stochastic) gradient descent (or its variants).

The whole pipeline is trained (i.e. its parameters are optimized) using autodiff.
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Multi-Layer Perceptron

Multi-Layer Perceptron

Definition and first properties
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Multi-Layer Perceptron

& @ N =
é_ x° o(x) X o(x) X §‘
g o o o 3
Q Q Q
Affine layer Activation Affine layer Activation Affine layer
Details

Idea: Composition of affine (also called linear) and activation (simple non-linear
coordinate-wise) functions. Simple extension of linear models.

Activations: Coordinate-wise functions. (usually ReLU i.e. o(z); = max{0, z;}).
Update rule: 20+ = o(WW 2" 4 p(1) (except for the last layer!).

Brain analogy: A “neuron” is a coordinate of an activation layer.
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Multi-Layer Perceptron

Definition (MLP)

A Multi-Layer Perceptron (MLP) of depth L > 1, widths (d"));c[o 1) € N**"" and
non-linear activation function o : R — R is a function gy : RAY — R of the form:

go(w) = fEED 0 fEE 00 {20 U (x)
where VI € [1, L]:
Odd layers are affine maps £~ (z) = WOz + b0 and WO e RE"xd"" p(0) ¢ Rd"
Even layers are activation functions f)(z); = o(z;).

Its parameter is 0 = (W), b(l))le[[1 17- @nd we denote as g( () = fO o 0 fM(z) the
intermediate output after layer [ € [0,2L — 1].

MASH Master 2, PSL Mathematics of Deep Learning, 2024 28/31



Multi-Layer Perceptron

Definition (ReLU networks)
Let ReLU; 4 be the space of all MLPs with RelLU activations s.t. d® = and d) = ¢'.
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Multi-Layer Perceptron

Definition (ReLU networks)
Let ReLU; 4 be the space of all MLPs with RelLU activations s.t. d® =dand dY) = d'.

Lemma (stability)
RelLUg 4 is stable by addition and composition. That is, Vg, g’ € ReLUg 4,

g+g eRelUsy and gog €RelLUgyq
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Multi-Layer Perceptron

Definition (ReLU networks)
Let ReLU; 4 be the space of all MLPs with RelLU activations s.t. d® =dand dY) = d'.

Lemma (stability)
RelLUg 4 is stable by addition and composition. That is, Vg, g’ € ReLUg 4,

g+g eRelUsy and gog €RelLUgyq

Lemma (continuity and piecewise linearity)

A RelLU network is continuous and piecewise linear.
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Multi-Layer Perceptron

Definition (Jacobian matrix)

Let f:R™ — R™ a differentiable function. Its Jacobian J¢(x) € R™*™ is the matrix whose
coordinates are the partial derivatives:

ofi(x of1(x

V)T o

f( ) Vf ( )T Ofm(x) Ofm(x)
m(x pl@) . dala)
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Multi-Layer Perceptron

Definition (Jacobian matrix)

Let f:R™ — R™ a differentiable function. Its Jacobian J¢(x) € R™*™ is the matrix whose
coordinates are the partial derivatives:

ofi(x of1(x

V)T o

f( ) Vf ( )T Ofm(x) Ofm(x)
m(x pl@) . dala)

Lemma (Jacobian of MLPs)
The Jacobian of an MLP gy is
Ty () = w O pE=Dy (L=1) p(L=2) @ pOp )
where D) = diag(a’(gézz_l)(x))) and gém_l)(x) is the input of the I'* activation.
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Multi-Layer Perceptron
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