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Introduction and motivation

Class overview
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First-order optimization

First-order optimization
Gradient descent and co.
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First-order optimization

First-order optimization

§ Find a minimizer θ‹ P Rd of a given objective function L : Rd Ñ R,

θ‹ P argmin
θPRd

Lpθq

§ Using an iterative algorithm relying on the gradient ∇Lpθtq at each iteration t ě 0.

source: https://distill.pub/2017/momentum/
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First-order optimization

First-order optimization

Iterative optimization algorithms

§ Initialization: θ0 P Rd (important in practice!).

§ Iteration: Usually θt`1 “ φt pθt,∇Lpθtq, stq where st is a hidden variable that is also
updated at each iteration.

§ Stopping time: T ą 0 (also important in practice!).

Main difficulties in neural network training

§ Non-convexity: If L is convex, i.e. @θ, θ1,Lp θ`θ1

2 q ď
Lpθq`Lpθ1q

2 , the optimization
problem is simple. Most theoretical results use this assumption to prove convergence.

§ High dimensionality: number of parameters d " 1000.

§ Access to the gradient: the gradient of L is too expensive to compute! In practice,
∇Lpθtq is replaced by a stochastic or mini-batch approximation r∇t.
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First-order optimization

Loss landscape

Training a neural network requires solving a difficult non-convex optimization problem

min
θPRd

1

N

N
ÿ

i“1

ℓ pgθpxiq, yiq

Ex: loss landscape around the optimum for ResNet-56 trained on CIFAR10.

source: Visualizing the Loss Landscape of Neural Nets. Li et.al., 2018.
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First-order optimization

Types of irregularities

§ Non-convexity,

§ Multiple local minima,

§ Spurious stationary points (e.g. saddle points),

§ Sharp variations (high curvature),

§ Local explosion (large values),

§ Plateaux (flat regions),

§ ...

In general, the regularity of the objective will depend on the architecture of the
neural network, and part of DL research is devoted to finding architecture that are
easy to train.
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First-order optimization

Ideal optimization theory for DL training

§ Should provide fast gradient computation for composition of modules.

§ Should explain performances of non-convex SGD (and its variants).

§ Should work in high-dimensional spaces.

§ Should extend to non-smooth objectives.

§ Should have assumptions that are reasonable for neural networks.
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First-order optimization

Next steps

1. Understand how the gradient is computed in Pytorch.

2. Understand why stochastic gradient works.
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First-order optimization

Some warnings about optimization in deep learning

Our final goal is to reduce the population risk, i.e. EpℓpgθpXq, Y qq!

§ We need to pay attention to overfitting in addition to using the optimization algorithm
to reduce the training error.

§ In this class, we focus specifically on the performance of the optimization algorithm in
minimizing the objective function, rather than the model’s generalization error.

§ In the next lessons, we will see techniques to avoid overfitting.
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Automatic differentiation

Automatic differentiation
A short recap on differentiating composite functions
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Automatic differentiation

Existing approaches to compute gradients

§ Finite differences: small perturbations g1pxq «
gpx`εq´gpxq

ε . Leads to round-off errors.

§ Symbolic differentiation: keeps symbolic expressions at each step of the process.

§ Automatic differentiation: clever use of the chain rule.

Chain rule (simple version)

Let f, g : R Ñ R differentiable, then

pf ˝ gq1 “ pf 1 ˝ gq ¨ g1
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Automatic differentiation

Recap: derivatives of multi-dimensional functions

Definition (Jacobian matrix)

Let f : Rn Ñ Rm a differentiable function. Its Jacobian Jf pxq P Rmˆn is the matrix whose
coordinates are the partial derivatives:

Jf pxq “

»

–

∇f1pxqJ

¨ ¨ ¨

∇fmpxqJ

fi

fl “

»

—

–

Bf1pxq

Bx1
¨ ¨ ¨

Bf1pxq

Bxn

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
Bfmpxq

Bx1
¨ ¨ ¨

Bfmpxq

Bxn

fi

ffi

fl

Chain rule (multi-dimensional version)

Let f : Rn Ñ Rm and g : Rp Ñ Rn differentiable, then

Jf˝g “ pJf ˝ gq ˆ Jg
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Automatic differentiation

Derivative of a composition of functions

Composite function

§ Let f plq : Rdpl´1q

Ñ Rdplq
and gpxq “ gpLqpxq where

gplqpxq “ f plq ˝ ¨ ¨ ¨ ˝ f p2q ˝ f p1qpxq

§ Then, the Jacobian matrix (i.e. matrix of derivatives) of g is

Jgpxq “ Jf pLq

´

gpL´1qpxq

¯

ˆ ¨ ¨ ¨ ˆ Jf p2q

´

gp1qpxq

¯

ˆ Jf p1qpxq

§ What is the computational complexity to compute the Jacobian matrix?
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Automatic differentiation

Computational complexity

Finite differences

§ The gradient of g can be approximated by finite differences: ∇gpxqi «
gpx`εeiq´gpxq

ε

§ Computational complexity: proportional to input dimension.

Matrix product

§ We have ∇gpxqJ “ JL ˆ ¨ ¨ ¨ ˆ J2 ˆ J1 where Jl “ Jf plq

`

gpl´1qpxq
˘

.

§ There are pL ´ 1q! ways to compute this product of L matrices.

§ Forward propagation: Compute ∇gpxqJ “ pJL ˆ pJL´1 ˆ ¨ ¨ ¨ ˆ pJ2 ˆ J1qqq. Requires
computation intensive matrix-matrix products.

§ Backward propagation: Compute ∇gpxqJ “ pppJL ˆ JL´1q ˆ ¨ ¨ ¨ ˆ J2q ˆ J1q. If
output is 1-dimensional, only needs matrix-vector products!
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Automatic differentiation

Which algorithm is faster?

Complexity for gradients of MLPs

§ Let gθ : Rd Ñ R an MLP of width w ě d and depth L ě 1.

§ Function value:

Opw2Lq operations.

§ Finite differences:

Opdw2Lq operations.

§ Forward propagation:

Opdw2Lq operations.

§ Backward propagation:

Opw2Lq operations.

Intuition for gradients w.r.t. parameters

§ Finite differences requires two function calls per parameter.

§ Backprop requires O(1) function calls for the whole gradient.

§ Interpretation as parameter testing:
§ Each partial derivative w.r.t. a parameter indicates if this parameter can describe the data.
§ With backprop, we can test all parameters at once.
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Automatic differentiation

Computation graphs: formal definition

Definition (computation graph)

§ Let G “ pV,Eq be a directed acyclic graph (DAG) encoding a function L : Rd Ñ R.

§ Parameters: For any root r P R, let xprq “ θprq be an input or parameter.

§ Layers: For any other node v P V {R, let xpvq “ f pvq
`

pxpwqqwPParentspvq

˘

.

§ Output: The output of the leaf node xpfq “ Lpθq P R where θ “ pθprqqrPR.

Properties

§ Essentially all programmable functions can be decomposed this way.

§ Chain rule: partial gradient Bxpfq

Bxpvq for a node v P V from that of its children.

Bxpfq

Bxpvq
“

ÿ

wPChildrenpvq

Bf pwq
´

pxpw1qqw1PParentspwq

¯

Bxpvq

J

Bxpfq

Bxpwq
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Automatic differentiation

The backpropagation algorithm (Rumelhart et al., 1986)

§ Composed of 2 steps: a forward pass (FP) and a backward pass (BP).

§ FP: For all r P R, let yprq “ xr the inputs (or parameters), and, for all v P V {R, we
compute iteratively from roots to leaf,

ypvq “ f pvq
´

pypwqqwPParentspvq

¯

§ BP: Let zpfq “ 1 and, for v P V {F , we compute iteratively from leaf to roots,

zpvq “
ÿ

wPChildrenpvq

Bf pwq
´

pypw1qqw1PParentspwq

¯

Bxpvq

J

zpwq

§ Then, for all r P R, we have BLpθq

Bθprq “ zprq.
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Non-convex optimization

Non-convex optimization
Convergence to local/global minima
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Non-convex optimization

Optimizing non-convex functions is hard...

Assumptions

§ The objective function is non-convex, differentiable and β-smooth, i.e. @θ, θ1 P Rd,

}∇Lpθq ´ ∇Lpθ1q}2 ď β}θ ´ θ1}2

§ We access unbiased noisy gradients r∇t where Ep r∇tq “ ∇Lpθtq and varp r∇tq ď σ2.

Proposition (worst-case convergence to global optimum)

For any first-order algorithm, there exists a smooth function L such that approx. error is at
least

Lpθtq ´ Lpθ‹q “ Ωpt´2{dq

This is prohibitive for large dimensional spaces (i.e. d ě 100)!
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Non-convex optimization

Convergence of SGD... to a stationary point

Theorem (convergence of non-convex SGD)

Let L : Rd Ñ R be a smooth function and ∆ “ Lpθ0q ´ Lpθ‹q. Then, SGD with step-size
η ď 1

β achieves the error

E
“

min
tďT

}∇Lpθtq}2
‰

ď
2∆

ηT
` βησ2

§ Convergence in expectation implies cv. with high probability using Markov inequality.

§ Convergence of the best iterate (i.e. smallest gradient norm). :(

§ Without noise, a constant step-size η “ 1{β is optimal.

§ Gradient noise adds a constant term. If constant step-size, no convergence.

§ Convergence only possible for decreasing step-sizes, with optimal cv. in Op1{
?
T q.
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Non-convex optimization

Convergence to a local minimum

How to obtain local minimum?
§ A local minimum can be defined using second order derivatives:

1. Stationarity: ∇Lpθq “ 0
2. Convexity: the Hessian HLpxq is SDP.

Convergence to a local minimum (Jin et.al., 2017)

§ Adding a small noise allows the parameter to escape saddle points.

§ Additional assumption: the Hessian HL is ρ-Lipschitz w.r.t. spectral norm.

§ With probability at least 1 ´ δ, the number of iterations to reach a gradient norm
}∇Lpθtq} ď ε and near-convexity λ1pHLpθtqq ě ´

?
ρε is bounded by

O

˜

β∆

ε2
log

ˆ

dβ∆

εδ

˙4
¸
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Non-convex optimization

Recap

§ The loss landscape of DL training is non-convex and potentially difficult to optimize.

§ Convergence to a global minimum prohibitive in high-dimensional spaces.

§ GD converges to a stationary point with constant step-sizes.

§ SGD converges (more slowly) to a stationary point with decreasing step-sizes.

§ Adding noise is necessary to converge to a local minimum (Jin et.al., 2017).

§ We need stronger assumptions on the objective function to go beyond...
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Beyond local minimisation

Beyond local minimisation
The  Lojasiewicz condition
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Beyond local minimisation

A look at the proof of convergence of SGD

§ By smoothness, we have, for θt`1 “ θt ´ ηGt,

EpLpθt`1qq ´ EpLpθtqq ď ´η

ˆ

1 ´
βη

2

˙

Ep}∇Lpθtq}2q `
βη2σ2

2

§ If the gradient is large, then the gradient step improves the function value.

§ When L is α-strongly convex, we have }∇Lpθtq}2 ě 2αpLpθtq ´ Lpθ‹qq.

§ If η ď 1{β, this implies, for εt “ EpLpθtqq ´ EpLpθ‹qq,

εt`1 ď p1 ´ αηq εt `
βη2σ2

2
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Beyond local minimisation

The Polyak- Lojasiewicz condition

Definition (Polyak &  Lojasiewicz, 1963)

A function L : Rd Ñ R is said to verify the µ-Polyak- Lojasiewicz (PL) condition iff

}∇Lpθtq}2 ě 2µ pLpθtq ´ Lpθ‹qq

where θ‹ P Rd is a global minimum of the function L and µ ą 0 is a constant.

Theorem (convergence of SGD under µ-PL)

If L is β-smooth and verifies the PL condition, then, with η ď 1
β , SGD achieves the precision

EpLpθT q ´ Lpθ‹qq ď ∆ p1 ´ µηq
T

`
βησ2

2µ

Exponential convergence rate Ope´T q without noise, and OplnpT q{T q otherwise.
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Beyond local minimisation

Beyond strongly convex functions

Is the PL condition satisfied for more than strongly-convex functions?

Examples

§ For Lpθq “ pθ1 ´ cospθ2qq2, we have }∇Lpθq}2 “

4Lpθqp1 ` sinpθ2q2q ě 4Lpθq.

§ More gl. if Lpθq “ gpθq2 and }∇gpθq} ě c for any θ P Rd, then }∇Lpθq}2 ě 4c2Lpθq.

Theorem (PL condition for compositions)

Let Lpθq “ pf ˝ gqpθq where f satisfies the µ-PL condition and g is such that, @θ P Rd

σmin

´

JgpθqJ
¯

ě ε ,

where σminpMq “ minx‰0 }Mx}{}x} is the smallest singular value of the matrix M . Then
L verifies the µ1-PL condition with µ1 “ µε2.
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Beyond local minimisation

PL for neural networks

Theorem (PL condition for MSE loss)

Let Lpθq “ 1
N

řN
i“1 ℓpgθpxiq, yiq where ℓpy, y1q “ }y ´ y1}22 and the model gθ is such that

σmin

ˆ

´

Jg,θpx1, θqJ
ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ
Jg,θpxN , θqJ

¯

˙

ě ε

then L verifies the µ-PL condition with µ “ 4ε2{N .

§ For over-parameterized neural networks, this quantity is usually controlled for θ “ θ0
(if the weights are properly initialized, see lesson 5), and valid on a neighborhood
around initialization (linked with the Neural Tangent Kernel, see lesson 6). For
example, uniform conditioning (Liu et al., 2020) assumes that the singular value is lower
bounded for all θ P Bpθ0, Rq.
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Beyond local minimisation

Recap

§ The loss lanscape of DL training is non-convex and potentially difficult to optimize.

§ Convergence to a global minimum for any smooth function is prohibitive in
high-dimensional spaces (exponential in d{2).

§ SGD (+ noise) can converge, within an error ε ą 0, to a local minimum of any smooth
function in roughly Opε´2q iterations.

§ By relaxing the convexity constraint to a PL condition, one can obtain convergence to
the global optimum.

§ The PL condition is verified for neural networks whose singular values of the Jacobian
are bounded from below.
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