
Mathematics of Deep Learning
Approximation guarantees

Lessons: Kevin Scaman

MASH Master 2, PSL Mathematics of Deep Learning, 2024 1/26



Class overview

1. Introduction and general overview 16/01

2. Non-convex optimization 23/01

3. Structure of ReLU networks and group invariances 06/02

4. Approximation guarantees 13/02

5. Stability and robustness 20/02

6. Infinite width limit of NNs 27/02

7. Generative models 12/03

8. Exam 19/03

MASH Master 2, PSL Mathematics of Deep Learning, 2024 2/26



Function approximation

Objective

§ The aim is to describe all functions that can be approximated by a given neural network
architecture, i.e. for ε ą 0, Dθ s.t.

dpf, gθq ď ε

where d is a distance over functions.

Examples

§ Uniform approximation: dpf, gθq “ }f ´ gθ}8 “ maxxPX |fpxq ´ gpxq|.

§ Lp approximation: dpf, gθq “ }f ´ gθ}p “ p
ş

xPX |fpxq ´ gpxq|pdµpxqq1{p.

§ Exact learning: dpf, gθq “ 1tDx P X , fpxq ‰ gθpxqu.
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Exact learning

Exact learning
Exact recovery of a function with a neural network
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Exact learning

Exact Learning

§ Any piecewise linear function can be created using ReLU networks.

§ For other activation functions, we cannot say much...

§ ...however, if the activation function is not fixed, then we can recreate any continuous
function!
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Exact learning

Kolmogorov-Arnold-Sprecher theorems

§ Answer to Hilbert’s 13th problem: are there continuous functions of several variables
that are not finite compositions of continuous functions of a lesser number of variables?

Theorem (Kolmogorov, 1957)

Any continuous function fpx1, . . . , xnq defined on r0, 1sn, n ě 2, can be written in the form

fpx1, . . . , xnq “

2n`1
ÿ

j“1

χj

˜

n
ÿ

i“1

ψijpxiq

¸

where χj , ψij : R Ñ R are continuous functions of one variable and ψij are monotone
functions which are not dependent on f .
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Exact learning

Kolmogorov-Arnold-Sprecher theorems

Theorem (Sprecher, 1964)

For each integer n ě 2, there exists a real, monotone increasing function ψ,
ψpr0, 1sq “ r0, 1s, dependent on n and having the following property: for each preassigned
number δ ą 0,there is a rational number ε P p0, δq, such that every real continuous function
fpx1, . . . , xnq, defined on r0, 1sn, can be written in the form

fpx1, . . . , xnq “

2n`1
ÿ

j“1

χ

˜

n
ÿ

i“1

λiψ pxi ` εpj ´ 1qq ` j ´ 1

¸

where χ is real and continuous and λ is a constant independent of f .
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Exact learning

Kolmogorov-Arnold-Sprecher theorems

Application to neural networks

§ For any continuous function f : Rd Ñ R and K Ă Rd compact, there is a 3-layer MLP
that recreates exactly the function on K.

§ The MLP has pd` 1qp2d` 1q neurons and p2d` 1qp3d2 ` d` 1q parameters.

Limitations
§ The activation function χ depends on the function to approximate f .

§ The function ψ is very irregular (despite being continuous), e.g. not Lipschitz.

§ This result is of limited use in practice...but has useful extensions for geometric deep
learning!
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Exact learning

DeepSets

Theorem (Zaheer et.al., 2018)

A function f : r0, 1sn Ñ R is continuous and permutation invariant if and only if it can be
decomposed in the form

fpx1, . . . , xnq “ χ

˜

n
ÿ

i“1

ψpxiq

¸

where χ : Rn`1 Ñ R and ψ : R Ñ Rn`1 are continuous functions.

Extensions

§ If d ě 1, f : r0, 1sn Ñ Rd can also be decomposed using dpn` 1q inner dimensions.

§ If K Ă Rd is compact, then f : Kn Ñ R can also be decomposed using more inner
dimensions.
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Exact learning

DeepSets (proof sketch)

§ We use ψpxq “ r1, x, . . . , xn`1s.

§ Epxq “
řn

i“1 ψpxiq is a polynomial.

§ The function E is bijective and bi-continuous.

§ We take χ “ f ˝ E´1.
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Link with polynomial approximation

Link with polynomial approximation
Stone-Weierstrass theorem and applications
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Link with polynomial approximation

Universality

Definition (universality)

Let d ě 1. A subset of continuous functions F Ă CpRdq is called universal if, for any
compact K Ă Rd, F is uniformly dense in CpRdq. In other words, for any continuous
function g P CpRdq and ε ą 0, there exists f P F such that

@x P K, |fpxq ´ gpxq| ď ε

§ For example, polynomials are uniformly dense in CpRq.

§ This result easily extends to vector-valued outputs.
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Link with polynomial approximation

Stone-Weierstrass theorem

Theorem (Stone-Weierstrass, simple version)

Suppose f is a continuous real-valued function defined on the real interval ra, bs. For every
ε ą 0, there exists a polynomial p such that for all x in ra, bs, we have |fpxq ´ ppxq| ď ε.

§ In other words, polynomials are universal for CpRq.

Proof.
§ If OK on r0, 1s, then OK on ra, bs.

§ Uniform continuity of f on r0, 1s: @ε ą 0, Dδ ą 0 s.t. |x´ y| ď δ ùñ |fpxq ´ fpyq| ď ε.

§ Let x P r0, 1s and K „ Binpn, xq. Then K{n Ñ x a.s. (by the LLN) and
EpfpK{nqq “

řn
k“0 fpk{nq

`

n
k

˘

xkp1 ´ xqn´k “ Pn,f pxq is a (Bernstein) polynomial.

§ |Pn,f pxq ´ fpxq| ď Ep|fpK{nq ´ fpxq|q ď ε` 2}f}8Pp|K{n´ x| ą δq ď ε`
}f}8

2nδ2
.
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Link with polynomial approximation

Side comment: convergence rate

Definition (Lipschitz regularity)

A function f : X Ñ Y is L-Lipschitz iff, @x, y P X , }fpxq ´ fpyq} ď L}x´ y}.

Adding more regularity

§ With a slight modification of the proof, we can see that, if f is L-Lipschitz, then

|Pn,f pxq ´ fpxq| ď
L

2
?
n

§ Gives a quantitative trade-off between quality of the approximation (i.e. small aprox.
error) and model complexity (i.e. order of the polynomial).
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Link with polynomial approximation

Stone-Weierstrass theorem

Definition (point separation)

A set F of functions defined on X is said to separate points if, for every two different points
x and y in X there exists a function f P F such that fpxq ‰ fpyq.

Theorem (Stone-Weierstrass, general version)

Suppose X is a compact Hausdorff space and F is a subalgebra of CpX ,Rq which contains
a non-zero constant function. Then F is dense in CpX ,Rq if and only if it separates points.

Remarks
§ Point separation is a necessary condition for universality.

§ Allows to extend polynomial approximation to CpRd,Rq.

§ Provides another proof for universality of deep set.
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Universality theorems

Universality theorems
Approximation guarantees of MLPs
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Universality theorems

Universality of 2-layer MLPs

Definition (sigmoidal function)

A function σ : R Ñ r0, 1s is sigmoidal if limxÑ´8 σpxq “ 0 and limxÑ`8 σpxq “ 1.

Theorem (Cybenko, 1989)

Let σ be an arbitrary continuous sigmoidal function. Then the finite sums of the form

fpxq “

N
ÿ

j“1

cjσpwJ
j x` bjq

for N ě 1, cj , bj P R, and wj P Rd is dense in Cpr0, 1sdq.

In other words, 2-layer MLPs are universal approximators of continuous functions.
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Universality theorems

Universality of 2-layer MLPs

Cybenko’s universality theorem does not work for ReLUs (as well as most modern
activation functions)!

Theorem (Pinker, 1999)

Finite sums of the form
řN

j“1 cjσpwJ
j x` bjq for N ě 1, cj , bj P R, and wj P Rd are dense

in Cpr0, 1sdq if and only if σ is not a polynomial.

Limitations
§ Does not provide a quantitative measure of approximation error.

§ No dependence on architecture hyper-parameters (number of layers, etc...)
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Universality theorems

Example of a quantitive results

Lemma

For any L-Lipschitz function f : r0, 1s Ñ R, there exists a ReLU network gθ of depth 2 and
width n such that, we have }f ´ gθ}8 ď L{n.

§ For higher input dimension, we usually have ε “ Θpn´1{dq.

§ Thus, n “ Θpε´dq neurons are needed to approximate a function to precision ε.

§ Trade-off between width and approximation error.
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Universality theorems

The power of depth (L “ 3)

There are 3-layer MLPs of width polypdq, which cannot be arbitrarily well approximated by
2-layer networks, unless their width is Ωpexppdqq.

Theorem (Eldan & Shamir, 2016)

Under (reasonable) assumptions on activation functions σ, there exists a measure µ and a
function g : Rd Ñ R that can be expressed by a 3-layer MLP of width Cd19{4 such that any
function f expressible by a 2-layer MLP of width cecd verifies:

ż

x
pfpxq ´ gpxqq2dµpxq ě c

where c, C ą 0 are universal constants.

§ For ReLU networks, the function g is polypdq-Lipschitz.
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Universality theorems

The power of depth (L ą 3)

For any k ě 1, there are Θpk3q-layer MLPs of width Θpk3q, which cannot be arbitrarily well
approximated by Opkq-layer networks, unless their width is Ωpexppkqq.

Theorem (Telgarsky, 2015)

Let any integer k ě 1 and any dimension d ě 1 be given. There exists f : Rd Ñ R
computed by a ReLU network in 2k3 ` 8 layers and 3k3 ` 12 neurons so that, for any ReLU
network f of depth less than k and less than 2k neurons, we have

ż

xPr0,1s

|fpxq ´ gpxq|dx ě 1{64

§ The proof relies on the sawtooth function with 2k teeths seen in TD.
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Universality theorems

Universality of fixed-width MLPs (Park et.al., 2021)

Theorem (Park et.al., 2021)

ReLU networks of width w “ maxtdp1q, . . . , dpL´1qu are dense in Cpr0, 1s,Rq iff w ě 3.
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Turing completeness of RNNs

Turing completeness of RNNs
Beyond function approximation
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Turing completeness of RNNs

Learning the algorithms behind the function

Beyond function approximation

§ Can a neural network learn products, i.e. f : R2 Ñ R s.t. fpx, yq “ xy?

§ Universality implies that the answer is yes on any bounded subset K Ă R2.

§ But can we learn this concept beyond our training set? On the whole space R2?

§ We need to limit the complexity of the function that we try to learn on the whole space.

§ Possible approach: functions that be computed by algorithms of bounded length.
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Turing completeness of RNNs

Learning the algorithms behind the function

RNNs as Turing machines (Siegelmann & Sontag, 1995)

§ RNNs can simulate any given Turing machine.

§ Idea: consider an RNNs such that

xipt` 1q “ σ

˜

ÿ

j

aijxjptq `
ÿ

j

bijujptq ` ci

¸

where uiptq is the input and xiptq is the internal state and σpxq “ mint0,maxtx, 1uu.

§ By choosing the paremeters a, b, c, we can recreate the behavior of any given Turing
machine.

§ In particular, with 886 neurons one can recreate a universal Turing machine.
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Turing completeness of RNNs

Recap

§ Exact learning is possible, provided that the activation function is not fixed.

§ 2-layer MLPs are universal approximators of continuous functions.

§ However, they usually require an exponential width w.r.t. input dimension.

§ Increasing depth can allow more flexibility.

§ Some functions are impossible to approx. with shallow NNs of polynomial width.

§ RNNs are Turing-complete.
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