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Stability during training

Stability during training

Weights initialization, gradient vanishing and explosion
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Stability during training

Example with simple RNNs (Elman networks, no gating mechanisms)
The gradients are sometimes very large.
This leads to a large drop in accuracy.

Results are quite random, final performance depends on initialization.
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Stability during training

Breaking gradient descent

If 0; are the iterates of the parameters learned using stochastic gradient descent on
minibatches (¢, Y1.i)ie[1,x] at time t, then we have

n
0t+1 = 9t - E ZZ: V‘Cxt,i,yt,i(e) ’

where L, ,(0) = £(go(x),v).

Gradient vanishing: When the gradients VL, , ., .(0) are very small compared to 6;,
the iteration does not modify the parameters.

Gradient explosion: When the gradients VL, , ,, () are very large compared to 0y, the
iteration will push the parameters to extreme values.
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Stability during training

Why is it a problem for deep learning?
By chain rule, the gradient tends to multiply along the layers.
Example: If g(B)(z) = f(F) o fL=D 6. .0 fN(z) where f1) : R — R, then

L

gV (@) =TTV (¢" V()

=1

If f(l),(g(l_l)(x)) ~ ¢, then g(L)I(a:) ~ cl
Exponentially small w.r.t. L if ¢ < 1 (gradient vanishing).
Exponentially large w.r.t. L if ¢ > 1 (gradient explosion).
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Stability during training

Gradient clipping
torch.nn.utils.clip_grad norm_(model.parameters(), threshold)
Pros: Easiest method, just limits the gradient norm to a fixed value.

Cons: Only for gradient explosion, adds an extra hyper-parameter.
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Stability during training

Gradient clipping
torch.nn.utils.clip_grad norm_(model.parameters(), threshold)
Pros: Easiest method, just limits the gradient norm to a fixed value.

Cons: Only for gradient explosion, adds an extra hyper-parameter.

Architecture changes
Gates in RNNs, residuals in CNNs, dropout, batch normalization, ...
Pros: More principled, usually leads to better performance.

Cons: Requires to change the network architecture, application dependent.
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Stability during training

Gradient clipping
torch.nn.utils.clip_grad norm_(model.parameters(), threshold)
Pros: Easiest method, just limits the gradient norm to a fixed value.

Cons: Only for gradient explosion, adds an extra hyper-parameter.

Architecture changes
Gates in RNNs, residuals in CNNs, dropout, batch normalization, ...
Pros: More principled, usually leads to better performance.

Cons: Requires to change the network architecture, application dependent.

Weight initialization

Automatically implemented, but can have an large impact on performance
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Stability during training

Ideal initialization scheme
The better the model is at initialization, the more changes we have of find good weights.
We would like to have values that are reasonable, Vi € [1,d")], |gg(z):| ~ 1.
We would like to have gradients that are neither too large nor too small

Vi e [1,p], VL, (0)i] ~ 1
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Stability during training

Ideal initialization scheme
The better the model is at initialization, the more changes we have of find good weights.
We would like to have values that are reasonable, Vi € [1,d")], |gg(x)i| ~ 1.
We would like to have gradients that are neither too large nor too small

Vi e [1,p], VL, (0)i] ~ 1

Simple solution

Set b() = 0 and sample the weights Wi(;) ~ P i.i.d. with expectation 0 and variance V(.

Choose V() so that the variance is constant across layers.
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Stability during training

Ideal initialization scheme
The better the model is at initialization, the more changes we have of find good weights.
We would like to have values that are reasonable, Vi € [1,d")], |gg(x)i| ~ 1.

We would like to have gradients that are neither too large nor too small
Vi e [1,p], VL, (0)i] ~ 1

Simple solution

Set b() = 0 and sample the weights Wi(;) ~ P i.i.d. with expectation 0 and variance V(.

Choose V() so that the variance is constant across layers.
Technical assumptions:
The probability distribution is symmetric w.r.t. 0 and P({0}) = 0.
The activation function is ReLU o(z) = max{0, x}.
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Stability during training

Preliminary results
Let 2 € RY” a fixed input and, VI € [1,L], X = g(sm_l)(x).
For any [ € [1, L], the variables (X,L-(l))ielll’d(m—l)]] are identically distributed.
The distribution of X" is symmetric w.r.t. 0 (and thus E(X ") = 0).
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Stability during training

Preliminary results

Let 2 € R%” a fixed input and, Vi e [1,L], X© = g~

For any [ € [1, L], the variables (Xi(l))ie[[l,d@l—D]] are identically distributed.

The distribution of X" is symmetric w.r.t. 0 (and thus E(X ") = 0).

Proof.
The proof follows a simple recurrence:
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Stability during training

Preliminary results
Let 2 € RY” a fixed input and, VI € [1,L], X = géQl_l)(x).
For any [ € [1, L], the variables (X;l))i6[17d(2l—1)]] are identically distributed.
The distribution of X" is symmetric w.r.t. 0 (and thus E(X ") = 0).

Proof.
The proof foIIows a simple recurrence:

Initialization: X Z mj is identically distributed and symmetric.
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Stability during training

Preliminary results
Let 2 € RY” a fixed input and, VI € [1,L], X = g(gm_l)(x).
For any [ € [1, L], the variables (Xi(l))ie[[ld(zz_l)]] are identically distributed.
The distribution of X\ is symmetric w.r.t. 0 (and thus E(X|") = 0).

Proof.
The proof foIIows a simple recurrence:

Initialization: X Z xj is |dent|ca||y distributed and symmetric.

If the properties are verified for [, then X =W ( x{= 1))

distributed and symmetric.

, which is identically
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Stability during training

Variance of the intermediate outputs
~ Forany le[2,L] and i € [1,d®], we have

var(X(") = var(3, we(x\7Y))

MASH Master 2, PSL Mathematics of Deep Learning, 2024 10/31



Stability during training

Variance of the intermediate outputs
~ Forany le[2,L] and i € [1,d®], we have

var(X) = Var(ZjWi?)a(XJ(.l_l)))
! —
= X var(Wo (x5
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Stability during training

Variance of the intermediate outputs

~ Forany le[2,L] and i € [1,d®], we have
var(Xi(l)) var(D; Wi(?)a(X. -1
= 2 var(Wi;)a(X](.l_l)

= var(W)) E(o(X )2
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Stability during training

Variance of the intermediate outputs
For any [ € [2,L] and i € [1,d®], we have

var(X) = var(3, wo(x!7))
2 var(W‘&)J(X;l_l)))
= var(W)) E(o(X1)2)
— A yO RV x Y s o)
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Stability during training

Variance of the intermediate outputs

For any [ € [2,L] and i € [1,d®], we have

var(X")
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o)
2 var(W‘&)J(XJ(l_l)))
= var(W)) E(o(X1)2)
-0y O g(x D 1 x D > o}

A0 VO var(x{7D) /2
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Stability during training

Variance of the intermediate outputs
For any [ € [2,L] and i € [1,d®], we have

var(X) = var(3, wo(x!7))
= Zjvar(W‘&)J(X](l_l)))
= a0 var (W) E(o (X! 7)?)
— A yO RV XY s o)

= AV var(x V)2

Hence, the variance is constant across layers if V() = 2/d(=1) and
var(go(x);) = 2|a|3/d®
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Stability during training

Gaussian weights

Our assumptions are satisfied if we use Gaussian weights Wi(;) ~N <0, y 12_1 >

Uniform weights

If we take uniform weights Wi(jl) ~U([—rD,rD]), then VD = 12/3 and

6
o,/ 2
r \ 20=1)
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Stability during training

Variance propagation during backprop
» Same analysis for backprop, but in reverse.
~ This gives an optimal variance V() = 2/d").
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Stability during training

Variance propagation during backprop
Same analysis for backprop, but in reverse.
This gives an optimal variance V) = 2/d(®).

In order to have both the variances of gradients and of values constant, we thus need
VO =2/d® and VO = 2/d0-1)
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Stability during training

Variance propagation during backprop
Same analysis for backprop, but in reverse.
This gives an optimal variance V) = 2/d(®).

In order to have both the variances of gradients and of values constant, we thus need
VO =2/d® and VO = 2/d0-1)

. . . . . 1 4
A reasonable heuristic consists in taking the average: v = PO =R
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Stability during training

Variance propagation during backprop
Same analysis for backprop, but in reverse.
This gives an optimal variance V) = 2/d(®).

In order to have both the variances of gradients and of values constant, we thus need
VO =2/d® and VO = 2/d0-1)

. . . . . 1 4
A reasonable heuristic consists in taking the average: v = PO =R

Xavier initialization (Xavier Glorot & Yoshua Bengio, 2010)

Let ¢ > 0 be a hyper-parameter. The weights are initialized using the heuristic

p p .deep g
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Stability during training

Idea
Normalize the input of each layer by removing mean and dividing by std.

Also uses a learnable affine map.
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Stability during training

Idea
Normalize the input of each layer by removing mean and dividing by std.

Also uses a learnable affine map.
Definition
If (z;); is a batch of b inputs (to the layer), then the output is:

T; —

E
we e

where E = > z;and V = 3, (2; — E)? (coord.-wise), v and 3 are learnable vectors.

+p
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Stability during training

A The output depends on the whole batch, not just single inputs!

Train and eval

The behavior of batch norm is different between training and evaluation (e.g.
model.train() and model.eval() in Pytorch).

At evaluation, the model uses a (moving) average of all training batches.

Stores E¥ and V for each training batch, and then computes

(1=p) Y p'Er and (1—p) ), p'Vi

where (typically) p = 0.9.
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Stability during training

Gradient vanishing and explosion can happen during training of deep NNs.

Gradient clipping, batch normalization, regularisation and proper weight
initialization can help stabilize training.

The variance of the weights at initialization should be inversely proportional to the
layer width.
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Robustness and adversarial attacks

Robustness and adversarial attacks

Confusing a neural network with noise
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Robustness and adversarial attacks

Can a small (invisible) noise change the prediction of a vision model?
Vision models are robust to random input noise.
Vision models are extremely fragile to well-crafted input noise.

+.007 x
; T+
@ sien(Ve(0.2.0)  ion (9,0, @.9)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

source: Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015.
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Robustness and adversarial attacks

Can a small (invisible) noise change the prediction of a vision model?
Vision models are robust to random input noise.
Vision models are extremely fragile to well-crafted input noise.

source: Robust Physical-World Attacks on Deep Learning Visual Classification, Eykholt et al, CVPR 2018.
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Robustness and adversarial attacks

Can a small (invisible) noise change the prediction of a vision model?
Vision models are robust to random input noise.
Vision models are extremely fragile to well-crafted input noise.

source: Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, Sharif et.al., CCS 2016.
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Robustness and adversarial attacks

Fast gradient sign method (Goodfellow et.al., 2014)
Idea: Take one gradient step in the direction that maximizes the loss.
To control the maximum pixel noise, use the coordinates’ sign instead of value.

Limitations: Destroys performance, but cannot target a specific class.

matt — .,L,true _|_ €Sign(vxﬁ(0, mtruej ytrue))
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Robustness and adversarial attacks

Fast gradient sign method (Goodfellow et.al., 2014)
Idea: Take one gradient step in the direction that maximizes the loss.
To control the maximum pixel noise, use the coordinates’ sign instead of value.

Limitations: Destroys performance, but cannot target a specific class.

xatt — true &.Slgn(v 5(0 :L,true true))

Iterative Target Class Method (Kurakin et.al., 2016)
Idea: Perform gradient descent on the loss with labels swaped.
To control the maximum pixel noise, project on a ball of radius € around =x.

Limitations: Requires to know the model weights (white box setting).

att

w1 = Clampe o (23" + esign(VL L0, 23", y™)))
20/31



Robustness and adversarial attacks

White-box attacks
Use the knowledge of the model to create the perturbation.

Gradient descent on a modified objective (classes swapped).
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Robustness and adversarial attacks

White-box attacks
Use the knowledge of the model to create the perturbation.

Gradient descent on a modified objective (classes swapped).

Black-box attacks
Attacks without access the parameters of the model.

Use a similar model, usually works relatively well.
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Robustness and adversarial attacks

White-box attacks
Use the knowledge of the model to create the perturbation.

Gradient descent on a modified objective (classes swapped).

Black-box attacks
Attacks without access the parameters of the model.

Use a similar model, usually works relatively well.

Defenses
Augment the dataset with adversarial attacks (brute-force).

Control the smoothness of the model (see next).
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Robustness and adversarial attacks

What makes a model robust?
Vital for practical applications in engineering or medicine.
If black-box, then trusting the model requires hard constraints.

Small input perturbation leads to small output perturbation.
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Robustness and adversarial attacks

What makes a model robust?
Vital for practical applications in engineering or medicine.
If black-box, then trusting the model requires hard constraints.

Small input perturbation leads to small output perturbation.

Lipschitz continuity
First order approximation: gg(x + €) — go(x) = Jg.(x,0)e + o(|e]).
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Robustness and adversarial attacks

What makes a model robust?
Vital for practical applications in engineering or medicine.
If black-box, then trusting the model requires hard constraints.

Small input perturbation leads to small output perturbation.

Lipschitz continuity
First order approximation: gg(x + €) — go(x) = Jg.(x,0)e + o(|e]).

[Jgq (x)u]2

[ul2 (operator norm) leads to robustness.

Control on [ Jg, (2)[2 = maxyxo
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Robustness and adversarial attacks

What makes a model robust?
Vital for practical applications in engineering or medicine.
If black-box, then trusting the model requires hard constraints.

Small input perturbation leads to small output perturbation.

Lipschitz continuity
First order approximation: gg(x + €) — go(x) = Jg.(x,0)e + o(|e]).

|/gq (2)ull2
lull2

Lipschitz constant: Ly, = sup, |Jg,(x)]2.

Control on [ Jg, (2)[2 = maxyxo (operator norm) leads to robustness.
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Robustness and adversarial attacks

What makes a model robust?
Vital for practical applications in engineering or medicine.
If black-box, then trusting the model requires hard constraints.

Small input perturbation leads to small output perturbation.

Lipschitz continuity
First order approximation: gg(x + €) — go(x) = Jg.(x,0)e + o(|e]).

|/gq (2)ull2
lul2

Lipschitz constant: Ly, = sup, |Jg,(x)]2.

Control on [ Jg, (2)[2 = maxyxo (operator norm) leads to robustness.

For piece-wise linear interpolation, Lipschitz constant is smaller than target function.
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Robustness and adversarial attacks

What makes a model robust?
Vital for practical applications in engineering or medicine.
If black-box, then trusting the model requires hard constraints.

Small input perturbation leads to small output perturbation.

Lipschitz continuity
First order approximation: gg(x + €) — go(x) = Jg.(x,0)e + o(|e]).

|/gq (2)ull2
lul2

Lipschitz constant: Ly, = sup, |Jg,(x)]2.

Control on [ Jg, (2)[2 = maxyxo (operator norm) leads to robustness.

For piece-wise linear interpolation, Lipschitz constant is smaller than target function.

For neural networks: Ly, <[], La... can be exponential in number of layers!
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Generalization beyond the training samples

Generalization beyond the training samples

From train accuracy to test accuracy
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Generalization beyond the training samples

9o, (%) 9o, (%)

trainging dataset (xl-, f(xi))ieu n} trainging dataset (xl-, f(xi))ie{1 -

. N

output space output space

Good generalization Poor generalization

Left model: More regular, worst on the training set, better on the whole space.
Right model: Less regular, better on the training set, worst on the whole space.

How does the model behaves when the test samples are different from the training
samples?
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Generalization beyond the training samples

Training objective and risk minimization
Let g : X — Y be a model and D be a distribution of data points in X x ).

inLn(0) = F plige(X),Y
min p(0) = Ex y)~p(l(9s(X),Y))

During training we minimize L5 () where D,
over the training dataset (74, Yi)ic[1,]-

Ly 8(wsys) s the empirical distribution
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Generalization beyond the training samples

Training objective and risk minimization
Let g : X — Y be a model and D be a distribution of data points in X x ).

inLn(0) = F plige(X),Y
min p(0) = Ex y)~p(l(9s(X),Y))

During training we minimize L5 () where D,
over the training dataset (74, Yi)ic[1,]-

Ly 8(wsys) s the empirical distribution

Statistical error

If & € R? is independent of the training samples, then, with probability 1 — §,

L5,(0) = L(6)] < )0 w

Unfortunately, the SGD iterates én,t depend on the training dataset ﬁn
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Generalization beyond the training samples

Decomposition of the error

Let én,t be the parameters after ¢ training steps and 6* € argming Lp(6). Then,

~ ~ ~

LoOnt) = LoOns) — Lp Ont) + Lp, (0ns) — Lp (07) + L (0) — Lp(0¥) + Lp(07)

Generalization error Optimization error Statistical error Approx.
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Generalization beyond the training samples

Decomposition of the error

Let én,t be the parameters after ¢ training steps and 6* € argming Lp(6). Then,
LoOns) = LoOns) = Lp, Ons) + Lp Onr) = Lp (0%) + Ly, (0%) = Lp(0%) + Lp(0%)

Generalization error Optimization error Statistical error Approx.

Approximation error: by the universality of MLPs, is arbitrarily small. d ™\,
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Generalization beyond the training samples

Decomposition of the error

Let én,t be the parameters after ¢ training steps and 6* € argming Lp(6). Then,
LoOns) = LoOns) = Lp, Ons) + Lp Onr) = Lp (0%) + Ly, (0%) = Lp(0%) + Lp(0%)

Generalization error Optimization error Statistical error Approx.
Approximation error: by the universality of MLPs, is arbitrarily small. d ™\,
Optimization error: Convergence for SGD if function is sufficiently regular. N\,
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Generalization beyond the training samples

Decomposition of the error
Let én,t be the parameters after ¢ training steps and 6* € argming Lp(6). Then,
£p(0ns) = LDOnst) = Lp (Buns) + L (Bns) = Lp (6%) + Lp (%) = Lo(0") + Lp(6")

Generalization error Optimization error Statistical error Approx.
Approximation error: by the universality of MLPs, is arbitrarily small. d ™\,
Optimization error: Convergence for SGD if function is sufficiently regular. N\,
Statistical error: Convergence in O (\/Lﬁ) by Tchebyshev concentration. n\
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Generalization beyond the training samples

Decomposition of the error
Let én,t be the parameters after ¢ training steps and 6* € argming Lp(6). Then,
LoOnt) = LoOns) — Lp Ont) + Lp, (0ns) — Lp (07) + L (0) — Lp(0¥) + Lp(07)

Generalization error Optimization error Statistical error Approx.
Approximation error: by the universality of MLPs, is arbitrarily small. d ™\,
Optimization error: Convergence for SGD if function is sufficiently regular. N\,
Statistical error: Convergence in O (\/Lﬁ) by Tchebyshev concentration. n\
Generalization error: Difficult part. Depends on the model and opt. d/,t /., n\,
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Generalization beyond the training samples

Usual analysis
Optimization error decreases
Generalization error increases

There is a trade-off

Usual mitigation strategies
Early stopping
Hyper-parameter selection via cross-validation
Regularization: ming L5 (0) + g(0) (usually g(0) = 7] 0]3)-
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Generalization beyond the training samples

Overfitting mitigated by over-parameterization
After a certain model size, test error starts decreasing again.

Over-parameterizing tends to create implicit regularization.

Classical Regime
Bias-Variance Tradeoff

0.5
2 o4
& \
c
T 03 \
2 \
g 0.2 \
= \

01 \

0.0

1 10 20 30 40 50 60
ResNet18 Width Parameter
@ Test ® Train

source: https://openai.com/blog/deep-double-descent/
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Generalization beyond the training samples

Overfitting mitigated by over-parameterization
After a certain model size, test error starts decreasing again.

Over-parameterizing tends to create implicit regularization.

Classical Regime Modern Regime
Bias-Variance Tradeoff Larger Model is Better

05
~ <—— Critical Regime
2 o4
w \
c
T 03 \
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4 02
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ResNet18 Width Parameter
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source: https://openai.com/blog/deep-double-descent/
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Generalization beyond the training samples

Overfitting mitigated by over-parameterization
After a certain model size, test error starts decreasing again.

Over-parameterizing tends to create implicit regularization.

Train Error Test Error
8
08 08
0 0.7
100 0.6
000 0s
05
05
2 2
S 04 S 04
<3 <3
aQ 100 aQ
w . w
08 03
0.2
10 01 0.2
1
0 15 30 45 60 0 15 30 45 60
ResNet18 Width Parameter ResNet18 Width Parameter

source: https://openai.com/blog/deep-double-descent/
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Generalization beyond the training samples

Generalization beyond overfitting
All hope is lost... until you forget to turn your computer off during the holidays.
Very (very) large plateaux during training.

Still not a satisfactory explanation (don’t do this at home. ;-) ).

Modular Division (training on 50% of data) Steps until generalization for product in abstract group Ss

00— tain 520 Aakaiss *|a b c¢c d e

— val

8
-y
&
A
>
g
e
5
S
N s b|lc d d a ¢
8 2
H ]
& 0 3 c|? e d b d
g 10t
4
g
» 4 ] dja ? ? b ¢
5 A Runs that didn't reach 99% val acc in 5 - 10% updates
3 ®  Runs that reached > 99% val acc in 5-10° updates
o = —— Median e b b c 2 a
10° :
! 2 9 9 s 3
10 10 o 10 o 10 03 04 05 06 07 08
Optimization Steps Training data fraction

source: Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets, Power et.al., 2022.
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Generalization beyond the training samples

Overfitting to the training dataset can be an issue when the number of parameters is
larger than the number of samples.

In practice, overparameterization can help generalization (often called implicit
regularization).

The training curves can exhibit a double descent behavior.

Long plateaux can appear on the test loss/accuracy.
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