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Stability during training
Weights initialization, gradient vanishing and explosion
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Stability during training

Stability during training

Example with simple RNNs (Elman networks, no gating mechanisms)

§ The gradients are sometimes very large.

§ This leads to a large drop in accuracy.

§ Results are quite random, final performance depends on initialization.
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Stability during training

Gradient vanishing and explosion

Breaking gradient descent

§ If θt are the iterates of the parameters learned using stochastic gradient descent on
minibatches pxt,i, yt,iqiPJ1,KK at time t, then we have

θt`1 “ θt ´
η

K

ÿ

i

∇Lxt,i,yt,ipθq ,

where Lx,ypθq “ ℓpgθpxq, yq.

§ Gradient vanishing: When the gradients ∇Lxt,i,yt,ipθq are very small compared to θt,
the iteration does not modify the parameters.

§ Gradient explosion: When the gradients ∇Lxt,i,yt,ipθq are very large compared to θt, the
iteration will push the parameters to extreme values.
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Stability during training

Gradient vanishing and explosion

Why is it a problem for deep learning?

§ By chain rule, the gradient tends to multiply along the layers.

§ Example: If gpLqpxq “ f pLq ˝ f pL´1q ˝ ¨ ¨ ¨ ˝ f p1qpxq where f pLq : R Ñ R, then

gpLq1
pxq “

L
ź

l“1

f plq1
pgpl´1qpxqq

§ If f plq1
pgpl´1qpxqq « c, then gpLq1

pxq « cL.

§ Exponentially small w.r.t. L if c ă 1 (gradient vanishing).

§ Exponentially large w.r.t. L if c ą 1 (gradient explosion).
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Stability during training

Mitigation techniques: how to avoid this?

Gradient clipping

§ torch.nn.utils.clip grad norm (model.parameters(), threshold)

§ Pros: Easiest method, just limits the gradient norm to a fixed value.

§ Cons: Only for gradient explosion, adds an extra hyper-parameter.

Architecture changes

§ Gates in RNNs, residuals in CNNs, dropout, batch normalization, ...

§ Pros: More principled, usually leads to better performance.

§ Cons: Requires to change the network architecture, application dependent.

Weight initialization

§ Automatically implemented, but can have an large impact on performance
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Stability during training

Weights initialization

Ideal initialization scheme
§ The better the model is at initialization, the more changes we have of find good weights.

§ We would like to have values that are reasonable, @i P J1, dpLqK, |gθpxqi| « 1.

§ We would like to have gradients that are neither too large nor too small

@i P J1, pK, |∇Lx,ypθqi| « 1

Simple solution

§ Set bplq “ 0 and sample the weights W
plq
ij „ P i.i.d. with expectation 0 and variance V plq.

§ Choose V plq so that the variance is constant across layers.
§ Technical assumptions:

§ The probability distribution is symmetric w.r.t. 0 and Ppt0uq “ 0.
§ The activation function is ReLU σpxq “ maxt0, xu.

MASH Master 2, PSL Mathematics of Deep Learning, 2024 8/31



Stability during training

Weights initialization

Ideal initialization scheme
§ The better the model is at initialization, the more changes we have of find good weights.

§ We would like to have values that are reasonable, @i P J1, dpLqK, |gθpxqi| « 1.

§ We would like to have gradients that are neither too large nor too small

@i P J1, pK, |∇Lx,ypθqi| « 1

Simple solution

§ Set bplq “ 0 and sample the weights W
plq
ij „ P i.i.d. with expectation 0 and variance V plq.

§ Choose V plq so that the variance is constant across layers.

§ Technical assumptions:
§ The probability distribution is symmetric w.r.t. 0 and Ppt0uq “ 0.
§ The activation function is ReLU σpxq “ maxt0, xu.

MASH Master 2, PSL Mathematics of Deep Learning, 2024 8/31



Stability during training

Weights initialization

Ideal initialization scheme
§ The better the model is at initialization, the more changes we have of find good weights.

§ We would like to have values that are reasonable, @i P J1, dpLqK, |gθpxqi| « 1.

§ We would like to have gradients that are neither too large nor too small

@i P J1, pK, |∇Lx,ypθqi| « 1

Simple solution

§ Set bplq “ 0 and sample the weights W
plq
ij „ P i.i.d. with expectation 0 and variance V plq.

§ Choose V plq so that the variance is constant across layers.
§ Technical assumptions:

§ The probability distribution is symmetric w.r.t. 0 and Ppt0uq “ 0.
§ The activation function is ReLU σpxq “ maxt0, xu.

MASH Master 2, PSL Mathematics of Deep Learning, 2024 8/31



Stability during training

Derivation of optimal weights

Preliminary results

§ Let x P Rdp0q

a fixed input and, @l P J1, LK, Xplq “ g
p2l´1q

θ pxq.

§ For any l P J1, LK, the variables pX
plq
i qiPJ1,dp2l´1qK are identically distributed.

§ The distribution of X
plq
i is symmetric w.r.t. 0 (and thus EpX

plq
j q “ 0).

Proof.
§ The proof follows a simple recurrence:

§ Initialization: X
p1q

i “
ř

j W
p1q

ij xj is identically distributed and symmetric.

§ If the properties are verified for l, then X
plq
i “

ř

j W
plq
ij σpX

pl´1q

j q, which is identically
distributed and symmetric.
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Stability during training

Derivation of optimal weight variance

Variance of the intermediate outputs

§ For any l P J2, LK and i P J1, dplqK, we have

varpX
plq
i q “ varp

ř

j W
plq
ij σpX

pl´1q

j qq

“
ř

j varpW
plq
ij σpX

pl´1q

j qq

“ dpl´1q varpW
plq
ij qEpσpX

pl´1q

j q2q

“ dpl´1q V plq EpX
pl´1q

j

2
1tX

pl´1q

j ą 0uq

“ dpl´1q V plq varpX
pl´1q

j q{2

§ Hence, the variance is constant across layers if V plq “ 2{dpl´1q, and

varpgθpxqiq “ 2}x}22{dp0q
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Stability during training

Kaiming initialization (Kaiming He et.al., 2015)

Gaussian weights

Our assumptions are satisfied if we use Gaussian weights W
plq
ij „ N

´

0, 2
dpl´1q

¯

.

Uniform weights

If we take uniform weights W
plq
ij „ Upr´rplq, rplqsq, then V plq “ r2{3 and

rplq “

c

6

dpl´1q
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Stability during training

Variance of the gradient

Variance propagation during backprop

§ Same analysis for backprop, but in reverse.

§ This gives an optimal variance V plq “ 2{dplq.

§ In order to have both the variances of gradients and of values constant, we thus need
V plq “ 2{dplq and V plq “ 2{dpl´1q...

§ A reasonable heuristic consists in taking the average: V plq “ 4
dplq`dpl´1q .

Xavier initialization (Xavier Glorot & Yoshua Bengio, 2010)

Let c ą 0 be a hyper-parameter. The weights are initialized using the heuristic

W
plq
ij „ Upr´rplq, rplqsq and rplq “

d

6c2

dplq ` dpl´1q

Impact of initialization in practice: https://www.deeplearning.ai/ai-notes/initialization/index.html
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Stability during training

Batch normalization

Idea
§ Normalize the input of each layer by removing mean and dividing by std.

§ Also uses a learnable affine map.

Definition
§ If pxiqi is a batch of b inputs (to the layer), then the output is:

yi “
xi ´ E
?
V ` ε

¨ γ ` β

where E “ 1
b

ř

i xi and V “ 1
b

ř

ipxi ´ Eq2 (coord.-wise), γ and β are learnable vectors.
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Stability during training

Batch normalization

The output depends on the whole batch, not just single inputs!

Train and eval
§ The behavior of batch norm is different between training and evaluation (e.g.
model.train() and model.eval() in Pytorch).

§ At evaluation, the model uses a (moving) average of all training batches.

§ Stores E and V for each training batch, and then computes

p1 ´ ρq
ÿ

t

ρtEt and p1 ´ ρq
ÿ

t

ρtVt

where (typically) ρ “ 0.9.
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Stability during training

Recap

§ Gradient vanishing and explosion can happen during training of deep NNs.

§ Gradient clipping, batch normalization, regularisation and proper weight
initialization can help stabilize training.

§ The variance of the weights at initialization should be inversely proportional to the
layer width.
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Robustness and adversarial attacks

Robustness and adversarial attacks
Confusing a neural network with noise
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Robustness and adversarial attacks

Adversarial attacks

§ Can a small (invisible) noise change the prediction of a vision model?
§ Vision models are robust to random input noise.
§ Vision models are extremely fragile to well-crafted input noise.

source: Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015.
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§ Can a small (invisible) noise change the prediction of a vision model?
§ Vision models are robust to random input noise.
§ Vision models are extremely fragile to well-crafted input noise.

source: Robust Physical-World Attacks on Deep Learning Visual Classification, Eykholt et al, CVPR 2018.
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Robustness and adversarial attacks

Adversarial attacks

§ Can a small (invisible) noise change the prediction of a vision model?
§ Vision models are robust to random input noise.
§ Vision models are extremely fragile to well-crafted input noise.

source: Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, Sharif et.al., CCS 2016.
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Robustness and adversarial attacks

Adversarial attacks: examples

Fast gradient sign method (Goodfellow et.al., 2014)

§ Idea: Take one gradient step in the direction that maximizes the loss.

§ To control the maximum pixel noise, use the coordinates’ sign instead of value.

§ Limitations: Destroys performance, but cannot target a specific class.

xatt “ xtrue ` ε signp∇xLpθ, xtrue, ytrueqq

Iterative Target Class Method (Kurakin et.al., 2016)

§ Idea: Perform gradient descent on the loss with labels swaped.

§ To control the maximum pixel noise, project on a ball of radius ε around x.

§ Limitations: Requires to know the model weights (white box setting).

xatt
k`1 “ Clampxtrue,ε pxatt

k ` ε signp∇xLpθ, xatt
k , yattqqq
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Robustness and adversarial attacks

Beyond the white box setting

White-box attacks
§ Use the knowledge of the model to create the perturbation.

§ Gradient descent on a modified objective (classes swapped).

Black-box attacks
§ Attacks without access the parameters of the model.

§ Use a similar model, usually works relatively well.

Defenses
§ Augment the dataset with adversarial attacks (brute-force).

§ Control the smoothness of the model (see next).
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Robustness and adversarial attacks

Robustness of neural networks

What makes a model robust?
§ Vital for practical applications in engineering or medicine.

§ If black-box, then trusting the model requires hard constraints.

§ Small input perturbation leads to small output perturbation.

Lipschitz continuity

§ First order approximation: gθpx ` εq ´ gθpxq “ Jg,xpx, θqε ` op}ε}q.

§ Control on }Jgθpxq}2 “ maxu‰0
}Jgθ pxqu}2

}u}2
(operator norm) leads to robustness.

§ Lipschitz constant: Lgθ “ supx }Jgθpxq}2.

§ For piece-wise linear interpolation, Lipschitz constant is smaller than target function.

§ For neural networks: Lgθ ď
ś

l Lf plq ... can be exponential in number of layers!
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§ First order approximation: gθpx ` εq ´ gθpxq “ Jg,xpx, θqε ` op}ε}q.

§ Control on }Jgθpxq}2 “ maxu‰0
}Jgθ pxqu}2

}u}2
(operator norm) leads to robustness.

§ Lipschitz constant: Lgθ “ supx }Jgθpxq}2.

§ For piece-wise linear interpolation, Lipschitz constant is smaller than target function.

§ For neural networks: Lgθ ď
ś

l Lf plq ... can be exponential in number of layers!
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Generalization beyond the training samples

Generalization beyond the training samples
From train accuracy to test accuracy
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Generalization beyond the training samples

Beyond the training samples

§ Left model: More regular, worst on the training set, better on the whole space.

§ Right model: Less regular, better on the training set, worst on the whole space.

§ How does the model behaves when the test samples are different from the training
samples?
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Generalization beyond the training samples

Beyond the training samples

Training objective and risk minimization

§ Let gθ : X Ñ Y be a model and D be a distribution of data points in X ˆ Y.

min
θPRd

LDpθq fi EpX,Y q„DpℓpgθpXq, Y qq

§ During training we minimize L
pDn

pθq where pDn “ 1
n

ř

i δpxi,yiq is the empirical distribution
over the training dataset pxi, yiqiPJ1,nK.

Statistical error

§ If θ P Rd is independent of the training samples, then, with probability 1 ´ δ,

ˇ

ˇ

ˇ
L

pDn
pθq ´ LDpθq

ˇ

ˇ

ˇ
ď }ℓ}8

c

2 ln p2{δq

n

§ Unfortunately, the SGD iterates pθn,t depend on the training dataset pDn...
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Generalization beyond the training samples

Decomposition of the error

Decomposition of the error

§ Let pθn,t be the parameters after t training steps and θ˚ P argminθ LDpθq. Then,

§ Approximation error: by the universality of MLPs, is arbitrarily small. d Œ

§ Optimization error: Convergence for SGD if function is sufficiently regular. t Œ

§ Statistical error: Convergence in O
´

1?
n

¯

by Tchebyshev concentration. n Œ

§ Generalization error: Difficult part. Depends on the model and opt. d Õ, t Õ, n Œ
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Generalization beyond the training samples

Overfitting in ML

Usual analysis

§ Optimization error decreases

§ Generalization error increases

§ There is a trade-off

Usual mitigation strategies

§ Early stopping

§ Hyper-parameter selection via cross-validation

§ Regularization: minθ L pDn
pθq ` gpθq (usually gpθq “ γ}θ}22).
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Generalization beyond the training samples

But...Double descent!

Overfitting mitigated by over-parameterization

§ After a certain model size, test error starts decreasing again.

§ Over-parameterizing tends to create implicit regularization.

source: https://openai.com/blog/deep-double-descent/
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Generalization beyond the training samples

But...Grokking!?

Generalization beyond overfitting

§ All hope is lost... until you forget to turn your computer off during the holidays.

§ Very (very) large plateaux during training.

§ Still not a satisfactory explanation (don’t do this at home. ;-) ).

source: Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets, Power et.al., 2022.
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Generalization beyond the training samples

Recap

§ Overfitting to the training dataset can be an issue when the number of parameters is
larger than the number of samples.

§ In practice, overparameterization can help generalization (often called implicit
regularization).

§ The training curves can exhibit a double descent behavior.

§ Long plateaux can appear on the test loss/accuracy.
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