Mathematics of Deep Learning Stability and robustness

Lessons: Kevin Scaman

1.	Introduction and general overview	16/01
2.	Non-convex optimization	23/01
3.	Structure of ReLU networks and group invariances	06/02
4.	Approximation guarantees	13/02
5.	Stability and robustness	20/02
6.	Infinite width limit of NNs	27/02
7.	Generative models	12/03
8.	Exam	19/03

Stability during training Weights initialization, gradient vanishing and explosion

Example with simple RNNs (Elman networks, no gating mechanisms)

- The gradients are sometimes very large.
- This leads to a large drop in accuracy.
- Results are **quite random**, final performance depends on initialization.

Gradient vanishing and explosion

Breaking gradient descent

• If θ_t are the iterates of the parameters learned using stochastic gradient descent on minibatches $(x_{t,i}, y_{t,i})_{i \in [\![1,K]\!]}$ at time t, then we have

$$\theta_{t+1} = \theta_t - \frac{\eta}{K} \sum_i \nabla \mathcal{L}_{x_{t,i},y_{t,i}}(\theta) ,$$

where $\mathcal{L}_{x,y}(\theta) = \ell(g_{\theta}(x), y).$

- **Gradient vanishing:** When the gradients $\nabla \mathcal{L}_{x_{t,i},y_{t,i}}(\theta)$ are very small compared to θ_t , the iteration does not modify the parameters.
- **Gradient explosion:** When the gradients $\nabla \mathcal{L}_{x_{t,i},y_{t,i}}(\theta)$ are very large compared to θ_t , the iteration will push the parameters to extreme values.

Gradient vanishing and explosion

Why is it a problem for deep learning?

- ▶ By chain rule, the gradient tends to multiply along the layers.
- Example: If $g^{(L)}(x) = f^{(L)} \circ f^{(L-1)} \circ \cdots \circ f^{(1)}(x)$ where $f^{(L)} : \mathbb{R} \to \mathbb{R}$, then

$$g^{(L)'}(x) = \prod_{l=1}^{L} f^{(l)'}(g^{(l-1)}(x))$$

• If $f^{(l)'}(g^{(l-1)}(x)) \approx c$, then $g^{(L)'}(x) \approx c^L$.

- **Exponentially small** w.r.t. L if c < 1 (gradient vanishing).
- **Exponentially large** w.r.t. L if c > 1 (gradient explosion).

Mitigation techniques: how to avoid this?

Gradient clipping

- torch.nn.utils.clip_grad_norm_(model.parameters(), threshold)
- **Pros:** Easiest method, just limits the gradient norm to a fixed value.
- **Cons:** Only for gradient explosion, adds an extra hyper-parameter.

Mitigation techniques: how to avoid this?

Gradient clipping

- torch.nn.utils.clip_grad_norm_(model.parameters(), threshold)
- **Pros:** Easiest method, just limits the gradient norm to a fixed value.
- **Cons:** Only for gradient explosion, adds an extra hyper-parameter.

Architecture changes

- ▶ Gates in RNNs, residuals in CNNs, dropout, batch normalization, ...
- **Pros:** More principled, usually leads to better performance.
- **Cons:** Requires to change the network architecture, application dependent.

Mitigation techniques: how to avoid this?

Gradient clipping

- torch.nn.utils.clip_grad_norm_(model.parameters(), threshold)
- **Pros:** Easiest method, just limits the gradient norm to a fixed value.
- **Cons:** Only for gradient explosion, adds an extra hyper-parameter.

Architecture changes

- ▶ Gates in RNNs, residuals in CNNs, dropout, batch normalization, ...
- **Pros:** More principled, usually leads to better performance.
- **Cons:** Requires to change the network architecture, application dependent.

Weight initialization

Automatically implemented, but can have an large impact on performance

Weights initialization

Ideal initialization scheme

- ▶ The better the model is at initialization, the more changes we have of find good weights.
- We would like to have values that are reasonable, $\forall i \in [\![1, d^{(L)}]\!]$, $|g_{\theta}(x)_i| \approx 1$.
- We would like to have gradients that are neither too large nor too small

$$\forall i \in [\![1,p]\!], \qquad |\nabla \mathcal{L}_{x,y}(\theta)_i| \approx 1$$

Weights initialization

Ideal initialization scheme

- ▶ The better the model is at initialization, the more changes we have of find good weights.
- We would like to have values that are reasonable, $\forall i \in [\![1, d^{(L)}]\!]$, $|g_{\theta}(x)_i| \approx 1$.
- We would like to have gradients that are neither too large nor too small

$$\forall i \in [\![1,p]\!], \qquad |\nabla \mathcal{L}_{x,y}(\theta)_i| \approx 1$$

Simple solution

- Set $b^{(l)} = 0$ and sample the weights $W_{ij}^{(l)} \sim \mathcal{P}$ i.i.d. with expectation 0 and variance $V^{(l)}$.
- Choose $V^{(l)}$ so that the variance is constant across layers.

Weights initialization

Ideal initialization scheme

- ▶ The better the model is at initialization, the more changes we have of find good weights.
- We would like to have values that are reasonable, $\forall i \in [\![1, d^{(L)}]\!]$, $|g_{\theta}(x)_i| \approx 1$.
- We would like to have gradients that are neither too large nor too small

$$\forall i \in [\![1,p]\!], \qquad |\nabla \mathcal{L}_{x,y}(\theta)_i| \approx 1$$

Simple solution

- Set $b^{(l)} = 0$ and sample the weights $W_{ij}^{(l)} \sim \mathcal{P}$ i.i.d. with expectation 0 and variance $V^{(l)}$.
- Choose $V^{(l)}$ so that the variance is constant across layers.
- Technical assumptions:
 - The probability distribution is symmetric w.r.t. 0 and $\mathcal{P}(\{0\}) = 0$.
 - The activation function is ReLU $\sigma(x) = \max\{0, x\}$.

Preliminary results

- ▶ Let $x \in \mathbb{R}^{d^{(0)}}$ a fixed input and, $\forall l \in \llbracket 1, L \rrbracket$, $X^{(l)} = g_{\theta}^{(2l-1)}(x)$.
- For any $l \in [\![1, L]\!]$, the variables $(X_i^{(l)})_{i \in [\![1, d^{(2l-1)}]\!]}$ are identically distributed.
- The distribution of $X_i^{(l)}$ is symmetric w.r.t. 0 (and thus $\mathbb{E}(X_j^{(l)}) = 0$).

Preliminary results

- Let $x \in \mathbb{R}^{d^{(0)}}$ a fixed input and, $\forall l \in \llbracket 1, L \rrbracket$, $X^{(l)} = g_{\theta}^{(2l-1)}(x)$.
- For any $l \in [\![1, L]\!]$, the variables $(X_i^{(l)})_{i \in [\![1, d^{(2l-1)}]\!]}$ are identically distributed.
- The distribution of $X_i^{(l)}$ is symmetric w.r.t. 0 (and thus $\mathbb{E}(X_j^{(l)}) = 0$).

Proof.

The proof follows a simple recurrence:

Preliminary results

- Let $x \in \mathbb{R}^{d^{(0)}}$ a fixed input and, $\forall l \in \llbracket 1, L \rrbracket$, $X^{(l)} = g_{\theta}^{(2l-1)}(x)$.
- For any $l \in [\![1, L]\!]$, the variables $(X_i^{(l)})_{i \in [\![1, d^{(2l-1)}]\!]}$ are identically distributed.
- The distribution of $X_i^{(l)}$ is symmetric w.r.t. 0 (and thus $\mathbb{E}(X_i^{(l)}) = 0$).

Proof.

- The proof follows a simple recurrence:
- Initialization: $X_i^{(1)} = \sum_j W_{ij}^{(1)} x_j$ is identically distributed and symmetric.

Preliminary results

- Let $x \in \mathbb{R}^{d^{(0)}}$ a fixed input and, $\forall l \in \llbracket 1, L \rrbracket$, $X^{(l)} = g_{\theta}^{(2l-1)}(x)$.
- For any $l \in [\![1, L]\!]$, the variables $(X_i^{(l)})_{i \in [\![1, d^{(2l-1)}]\!]}$ are identically distributed.
- The distribution of $X_i^{(l)}$ is symmetric w.r.t. 0 (and thus $\mathbb{E}(X_j^{(l)}) = 0$).

Proof.

- The proof follows a simple recurrence:
- Initialization: $X_i^{(1)} = \sum_j W_{ij}^{(1)} x_j$ is identically distributed and symmetric.
- If the properties are verified for l, then $X_i^{(l)} = \sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)})$, which is identically distributed and symmetric.

Derivation of optimal weight variance

Variance of the intermediate outputs

$$\operatorname{var}(X_i^{(l)}) = \operatorname{var}(\sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)}))$$

Derivation of optimal weight variance

Variance of the intermediate outputs

$$\begin{aligned} \operatorname{var}(X_{i}^{(l)}) &= \operatorname{var}(\sum_{j} W_{ij}^{(l)} \sigma(X_{j}^{(l-1)})) \\ &= \sum_{j} \operatorname{var}(W_{ij}^{(l)} \sigma(X_{j}^{(l-1)})) \end{aligned}$$

Derivation of optimal weight variance

Variance of the intermediate outputs

$$\begin{aligned} \operatorname{var}(X_i^{(l)}) &= \operatorname{var}(\sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= \sum_j \operatorname{var}(W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= d^{(l-1)} \operatorname{var}(W_{ij}^{(l)}) \mathbb{E}(\sigma(X_j^{(l-1)})^2) \end{aligned}$$

Derivation of optimal weight variance

Variance of the intermediate outputs

$$\begin{aligned} \operatorname{var}(X_i^{(l)}) &= \operatorname{var}(\sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= \sum_j \operatorname{var}(W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= d^{(l-1)} \operatorname{var}(W_{ij}^{(l)}) \mathbb{E}(\sigma(X_j^{(l-1)})^2) \\ &= d^{(l-1)} V^{(l)} \mathbb{E}(X_j^{(l-1)^2} \mathbb{1}\{X_j^{(l-1)} > 0\}) \end{aligned}$$

Derivation of optimal weight variance

Variance of the intermediate outputs

$$\begin{aligned} \operatorname{var}(X_i^{(l)}) &= \operatorname{var}(\sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= \sum_j \operatorname{var}(W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= d^{(l-1)} \operatorname{var}(W_{ij}^{(l)}) \mathbb{E}(\sigma(X_j^{(l-1)})^2) \\ &= d^{(l-1)} V^{(l)} \mathbb{E}(X_j^{(l-1)^2} \mathbb{1}\{X_j^{(l-1)} > 0\}) \\ &= d^{(l-1)} V^{(l)} \operatorname{var}(X_j^{(l-1)})/2 \end{aligned}$$

Derivation of optimal weight variance

Variance of the intermediate outputs

For any $l \in \llbracket 2, L \rrbracket$ and $i \in \llbracket 1, d^{(l)} \rrbracket$, we have

$$\begin{aligned} \operatorname{var}(X_i^{(l)}) &= \operatorname{var}(\sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= \sum_j \operatorname{var}(W_{ij}^{(l)} \sigma(X_j^{(l-1)})) \\ &= d^{(l-1)} \operatorname{var}(W_{ij}^{(l)}) \mathbb{E}(\sigma(X_j^{(l-1)})^2) \\ &= d^{(l-1)} V^{(l)} \mathbb{E}(X_j^{(l-1)^2} \mathbb{1}\{X_j^{(l-1)} > 0\}) \\ &= d^{(l-1)} V^{(l)} \operatorname{var}(X_j^{(l-1)})/2 \end{aligned}$$

• Hence, the variance is constant across layers if $V^{(l)} = 2/d^{(l-1)}$, and

$$\operatorname{var}(g_{\theta}(x)_i) = 2 \|x\|_2^2 / d^{(0)}$$

MASH Master 2, PSL

Kaiming initialization (Kaiming He et.al., 2015)

Gaussian weights

Our assumptions are satisfied if we use Gaussian weights $W_{ij}^{(l)} \sim \mathcal{N}\left(0, \frac{2}{d^{(l-1)}}\right)$.

Uniform weights

If we take uniform weights $W_{ij}^{(l)}\sim \mathcal{U}([-r^{(l)},r^{(l)}])$, then $V^{(l)}=r^2/3$ and

$$r^{(l)} = \sqrt{\frac{6}{d^{(l-1)}}}$$

Variance propagation during backprop

- Same analysis for backprop, but in **reverse**.
- This gives an optimal variance $V^{(l)} = 2/d^{(l)}$.

Variance propagation during backprop

- Same analysis for backprop, but in reverse.
- This gives an optimal variance $V^{(l)} = 2/d^{(l)}$.
- In order to have both the variances of gradients and of values constant, we thus need $V^{(l)}=2/d^{(l)}$ and $V^{(l)}=2/d^{(l-1)}...$

Variance propagation during backprop

- Same analysis for backprop, but in **reverse**.
- This gives an optimal variance $V^{(l)} = 2/d^{(l)}$.
- In order to have both the variances of gradients and of values constant, we thus need $V^{(l)} = 2/d^{(l)}$ and $V^{(l)} = 2/d^{(l-1)}...$
- A reasonable heuristic consists in taking the average: $V^{(l)} = \frac{4}{d^{(l)} + d^{(l-1)}}$.

Variance propagation during backprop

- Same analysis for backprop, but in reverse.
- This gives an optimal variance $V^{(l)} = 2/d^{(l)}$.
- In order to have both the variances of gradients and of values constant, we thus need $V^{(l)}=2/d^{(l)}$ and $V^{(l)}=2/d^{(l-1)}...$
- A reasonable heuristic consists in taking the average: $V^{(l)} = \frac{4}{d^{(l)} + d^{(l-1)}}$.

Xavier initialization (Xavier Glorot & Yoshua Bengio, 2010)

Let c > 0 be a hyper-parameter. The weights are initialized using the heuristic

$$W_{ij}^{(l)} \sim \mathcal{U}([-r^{(l)}, r^{(l)}]) \qquad \text{and} \qquad r^{(l)} = \sqrt{\frac{6c^2}{d^{(l)} + d^{(l-1)}}}$$

Batch normalization

Idea

- Normalize the input of each layer by **removing mean and dividing by std**.
- Also uses a learnable affine map.

Batch normalization

Idea

- Normalize the input of each layer by **removing mean and dividing by std**.
- Also uses a learnable affine map.

Definition

• If $(x_i)_i$ is a batch of b inputs (to the layer), then the output is:

$$y_i = \frac{x_i - E}{\sqrt{V + \varepsilon}} \cdot \gamma + \beta$$

where $E = \frac{1}{b} \sum_{i} x_i$ and $V = \frac{1}{b} \sum_{i} (x_i - E)^2$ (coord.-wise), γ and β are learnable vectors.

Batch normalization

The output depends on the whole batch, not just single inputs!

Train and eval

- The behavior of batch norm is different between training and evaluation (e.g. model.train() and model.eval() in Pytorch).
- At evaluation, the model uses a (moving) average of all training batches.
- Stores E and V for each training batch, and then computes

$$(1-\rho)\sum_t \rho^t E_t \quad \text{and} \quad (1-\rho)\sum_t \rho^t V_t$$

where (typically) $\rho = 0.9$.

Recap

- Gradient vanishing and explosion can happen during training of deep NNs.
- Gradient clipping, batch normalization, regularisation and proper weight initialization can help stabilize training.
- The variance of the weights at initialization should be inversely proportional to the layer width.

Robustness and adversarial attacks Confusing a neural network with noise

Adversarial attacks

- Can a small (invisible) noise change the prediction of a vision model?
- Vision models are robust to random input noise.
- Vision models are extremely fragile to well-crafted input noise.

source: Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015.

MASH	Master	PSI

Adversarial attacks

- Can a small (invisible) noise change the prediction of a vision model?
- Vision models are robust to random input noise.
- Vision models are extremely fragile to well-crafted input noise.

source: Robust Physical-World Attacks on Deep Learning Visual Classification, Eykholt et al, CVPR 2018.

MASH Master 2, PSL

Adversarial attacks

- Can a small (invisible) noise change the prediction of a vision model?
- Vision models are robust to random input noise.
- Vision models are extremely fragile to well-crafted input noise.

source: Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, Sharif et.al., CCS 2016.

Adversarial attacks: examples

Fast gradient sign method (Goodfellow et.al., 2014)

- Idea: Take one gradient step in the direction that maximizes the loss.
- ▶ To control the maximum pixel noise, use the coordinates' sign instead of value.
- Limitations: Destroys performance, but cannot target a specific class.

 $x^{\mathsf{att}} = x^{\mathsf{true}} + \varepsilon \operatorname{sign}(\nabla_x \mathcal{L}(\theta, x^{\mathsf{true}}, y^{\mathsf{true}}))$

Adversarial attacks: examples

Fast gradient sign method (Goodfellow et.al., 2014)

- Idea: Take one gradient step in the direction that maximizes the loss.
- ▶ To control the maximum pixel noise, use the coordinates' sign instead of value.
- Limitations: Destroys performance, but cannot target a specific class.

 $x^{\mathsf{att}} = x^{\mathsf{true}} + \varepsilon \operatorname{sign}(\nabla_x \mathcal{L}(\theta, x^{\mathsf{true}}, y^{\mathsf{true}}))$

Iterative Target Class Method (Kurakin et.al., 2016)

- Idea: Perform gradient descent on the loss with labels swaped.
- > To control the maximum pixel noise, project on a ball of radius ε around x.
- **Limitations:** Requires to know the model weights (white box setting).

$$x_{k+1}^{\text{\tiny att}} = \mathsf{Clamp}_{x^{\text{\tiny true}},\varepsilon}\left(x_k^{\text{\tiny att}} + \varepsilon \operatorname{sign}(\nabla_x \mathcal{L}(\theta, x_k^{\text{\tiny att}}, y^{\text{\tiny att}}))\right)$$

Beyond the white box setting

White-box attacks

- Use the knowledge of the model to create the perturbation.
- Gradient descent on a modified objective (classes swapped).

Beyond the white box setting

White-box attacks

- Use the knowledge of the model to create the perturbation.
- Gradient descent on a modified objective (classes swapped).

Black-box attacks

- Attacks without access the parameters of the model.
- Use a similar model, usually works relatively well.

Beyond the white box setting

White-box attacks

- Use the knowledge of the model to create the perturbation.
- Gradient descent on a modified objective (classes swapped).

Black-box attacks

- Attacks without access the parameters of the model.
- Use a similar model, usually works relatively well.

Defenses

- Augment the dataset with adversarial attacks (brute-force).
- Control the smoothness of the model (see next).

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- ▶ If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- ▶ If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

Lipschitz continuity

First order approximation: $g_{\theta}(x + \varepsilon) - g_{\theta}(x) = J_{g,x}(x, \theta)\varepsilon + o(\|\varepsilon\|).$

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

- First order approximation: $g_{\theta}(x + \varepsilon) g_{\theta}(x) = J_{g,x}(x,\theta)\varepsilon + o(\|\varepsilon\|).$
- Control on $||J_{g_{\theta}}(x)||_2 = \max_{u \neq 0} \frac{||J_{g_{\theta}}(x)u||_2}{||u||_2}$ (operator norm) leads to robustness.

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

- First order approximation: $g_{\theta}(x + \varepsilon) g_{\theta}(x) = J_{g,x}(x,\theta)\varepsilon + o(\|\varepsilon\|).$
- Control on $||J_{g_{\theta}}(x)||_2 = \max_{u \neq 0} \frac{\|J_{g_{\theta}}(x)u\|_2}{\|u\|_2}$ (operator norm) leads to robustness.
- Lipschitz constant: $L_{g_{\theta}} = \sup_{x} \|J_{g_{\theta}}(x)\|_{2}$.

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

- First order approximation: $g_{\theta}(x + \varepsilon) g_{\theta}(x) = J_{g,x}(x, \theta)\varepsilon + o(\|\varepsilon\|).$
- Control on $||J_{g_{\theta}}(x)||_2 = \max_{u \neq 0} \frac{\|J_{g_{\theta}}(x)u\|_2}{\|u\|_2}$ (operator norm) leads to robustness.
- Lipschitz constant: $L_{g_{\theta}} = \sup_{x} \|J_{g_{\theta}}(x)\|_{2}$.
- ▶ For piece-wise linear interpolation, Lipschitz constant is smaller than target function.

What makes a model robust?

- Vital for practical applications in engineering or medicine.
- ▶ If **black-box**, then trusting the model requires **hard constraints**.
- Small input perturbation leads to small output perturbation.

- First order approximation: $g_{\theta}(x + \varepsilon) g_{\theta}(x) = J_{g,x}(x, \theta)\varepsilon + o(\|\varepsilon\|).$
- ▶ Control on $||J_{g_{\theta}}(x)||_2 = \max_{u\neq 0} \frac{||J_{g_{\theta}}(x)u||_2}{||u||_2}$ (operator norm) leads to robustness.
- Lipschitz constant: $L_{g_{\theta}} = \sup_{x} \|J_{g_{\theta}}(x)\|_{2}$.
- ▶ For piece-wise linear interpolation, Lipschitz constant is smaller than target function.
- For neural networks: $L_{g_{\theta}} \leq \prod_{l} L_{f^{(l)}}...$ can be exponential in number of layers!

Generalization beyond the training samples From train accuracy to test accuracy

Beyond the training samples

- Left model: More regular, worst on the training set, better on the whole space.
- **Right model:** Less regular, better on the training set, worst on the whole space.
- How does the model behaves when the test samples are different from the training samples?

Beyond the training samples

Training objective and risk minimization

• Let $g_{\theta} : \mathcal{X} \to \mathcal{Y}$ be a model and \mathcal{D} be a distribution of data points in $\mathcal{X} \times \mathcal{Y}$.

$$\min_{\theta \in \mathbb{R}^d} \mathcal{L}_{\mathcal{D}}(\theta) \triangleq \mathbb{E}_{(X,Y) \sim \mathcal{D}}(\ell(g_{\theta}(X), Y))$$

• During training we minimize $\mathcal{L}_{\widehat{\mathcal{D}}_n}(\theta)$ where $\widehat{\mathcal{D}}_n = \frac{1}{n} \sum_i \delta_{(x_i, y_i)}$ is the empirical distribution over the training dataset $(x_i, y_i)_{i \in [\![1, n]\!]}$.

Beyond the training samples

Training objective and risk minimization

• Let $g_{\theta} : \mathcal{X} \to \mathcal{Y}$ be a model and \mathcal{D} be a distribution of data points in $\mathcal{X} \times \mathcal{Y}$.

$$\min_{\theta \in \mathbb{R}^d} \mathcal{L}_{\mathcal{D}}(\theta) \triangleq \mathbb{E}_{(X,Y) \sim \mathcal{D}}(\ell(g_{\theta}(X), Y))$$

• During training we minimize $\mathcal{L}_{\widehat{\mathcal{D}}_n}(\theta)$ where $\widehat{\mathcal{D}}_n = \frac{1}{n} \sum_i \delta_{(x_i, y_i)}$ is the empirical distribution over the training dataset $(x_i, y_i)_{i \in [\![1, n]\!]}$.

Statistical error

▶ If $\theta \in \mathbb{R}^d$ is independent of the training samples, then, with probability $1 - \delta$,

$$\left|\mathcal{L}_{\widehat{\mathcal{D}}_{n}}(\theta) - \mathcal{L}_{\mathcal{D}}(\theta)\right| \leq \|\ell\|_{\infty} \sqrt{\frac{2\ln\left(2/\delta\right)}{n}}$$

lacksim Unfortunately, the SGD iterates $\widehat{ heta}_{n,t}$ depend on the training dataset $\widehat{\mathcal{D}}_{n}...$

Decomposition of the error

► Let $\hat{\theta}_{n,t}$ be the parameters after t training steps and $\theta^* \in \operatorname{argmin}_{\theta} \mathcal{L}_{\mathcal{D}}(\theta)$. Then, $\mathcal{L}_{\mathcal{D}}(\hat{\theta}_{n,t}) = \mathcal{L}_{\mathcal{D}}(\hat{\theta}_{n,t}) - \mathcal{L}_{\hat{\mathcal{D}}_n}(\hat{\theta}_{n,t}) + \mathcal{L}_{\hat{\mathcal{D}}_n}(\hat{\theta}_{n,t}) - \mathcal{L}_{\hat{\mathcal{D}}_n}(\theta^*) + \mathcal{L}_{\mathcal{D}_n}(\theta^*) - \mathcal{L}_{\mathcal{D}}(\theta^*) + \mathcal{L}_{\mathcal{D}}(\theta^*)$ Generalization error
Optimization error
Statistical error
Approx.

Decomposition of the error

• **Approximation error:** by the universality of MLPs, is arbitrarily small.

Decomposition of the error

• **Approximation error:** by the universality of MLPs, is arbitrarily small.

• **Optimization error:** Convergence for SGD if function is sufficiently regular.

Decomposition of the error

- **Approximation error:** by the universality of MLPs, is arbitrarily small.
- **Optimization error:** Convergence for SGD if function is sufficiently regular.
- **Statistical error:** Convergence in $O\left(\frac{1}{\sqrt{n}}\right)$ by Tchebyshev concentration.

 $d \setminus$

 $n \setminus$

Decomposition of the error

- **Approximation error:** by the universality of MLPs, is arbitrarily small.
- **Optimization error:** Convergence for SGD if function is sufficiently regular.
- Statistical error: Convergence in $O\left(\frac{1}{\sqrt{n}}\right)$ by Tchebyshev concentration.
- Generalization error: Difficult part. Depends on the model and opt. $d \nearrow, t \nearrow, n \searrow$

 $d \sum$

 $t \searrow$

 $n \searrow$

Overfitting in ML

Usual analysis

- Optimization error decreases
- Generalization error increases
- There is a trade-off

Usual mitigation strategies

- Early stopping
- Hyper-parameter selection via cross-validation
- ▶ Regularization: $\min_{\theta} \mathcal{L}_{\hat{\mathcal{D}}_n}(\theta) + g(\theta)$ (usually $g(\theta) = \gamma \|\theta\|_2^2$).

But...Double descent!

Overfitting mitigated by over-parameterization

- After a certain model size, test error starts decreasing again.
- Over-parameterizing tends to create **implicit regularization**.

source: https://openai.com/blog/deep-double-descent/

MASH Master 2, PSL

But...Double descent!

Overfitting mitigated by over-parameterization

- After a certain model size, test error starts decreasing again.
- Over-parameterizing tends to create **implicit regularization**.

MASH Master 2, PSL

But...Double descent!

Overfitting mitigated by over-parameterization

- > After a certain model size, test error starts decreasing again.
- Over-parameterizing tends to create **implicit regularization**.

source: https://openai.com/blog/deep-double-descent/

MASH Master 2, PSL

But...Grokking!?

Generalization beyond overfitting

- All hope is lost... until you forget to turn your computer off during the holidays.
- Very (very) large plateaux during training.
- Still not a satisfactory explanation (don't do this at home. ;-)).

source: Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets, Power et.al., 2022.

MASH Master 2, PS

Recap

- Overfitting to the training dataset can be an issue when the number of parameters is larger than the number of samples.
- In practice, overparameterization can help generalization (often called implicit regularization).
- The training curves can exhibit a **double descent behavior**.
- ▶ Long plateaux can appear on the test loss/accuracy.