Mathematics of Deep Learning Infinite width limit of NNs

Lessons: Kevin Scaman

1.	Introduction and general overview	16/01
2.	Non-convex optimization	23/01
3.	Structure of ReLU networks and group invariances	06/02
4.	Approximation guarantees	13/02
5.	Stability and robustness	20/02
6.	Infinite width limit of NNs	27/02
7.	Generative models	12/03
8.	Exam	19/03

Behavior at initialization in the infinite-width limit From neural networks to Gaussian processes

Behavior at initialization

Back to weight initialization

Variance of the output and Jacobian matrix for ReLU networks

- With the notations: $X^{(l)} = g_{\theta}^{(2l-1)}(x)$, $Y^{(l)} = J_{g_{\rho}^{(2l-1)}}(x)$ and $\operatorname{var}(W_{ij}^{(l)}) = V^{(l)}$.
- We have $\operatorname{var}(X_i^{(l)}) = d^{(l-1)} V^{(l)} \operatorname{var}(X_j^{(l-1)})/2.$

• We have $\operatorname{var}(Y_{ij}^{(l)}) = d^{(l-1)} V^{(l)} \operatorname{var}(Y_{kj}^{(l-1)})/2.$

Behavior at initialization

Back to weight initialization

Variance of the output and Jacobian matrix for ReLU networks

- With the notations: $X^{(l)} = g_{\theta}^{(2l-1)}(x)$, $Y^{(l)} = J_{q_{\theta}^{(2l-1)}}(x)$ and $\operatorname{var}(W_{ij}^{(l)}) = V^{(l)}$.
- We have $\operatorname{var}(X_i^{(l)}) = d^{(l-1)} V^{(l)} \operatorname{var}(X_j^{(l-1)})/2.$
- We have $\operatorname{var}(Y_{ij}^{(l)}) = d^{(l-1)} V^{(l)} \operatorname{var}(Y_{kj}^{(l-1)})/2.$
- What happens when the widths $d^{(l)}$ tend to $+\infty$?

Behavior at initialization

Back to weight initialization

Variance of the output and Jacobian matrix for ReLU networks

- With the notations: $X^{(l)} = g_{\theta}^{(2l-1)}(x)$, $Y^{(l)} = J_{q_{\theta}^{(2l-1)}}(x)$ and $\operatorname{var}(W_{ij}^{(l)}) = V^{(l)}$.
- We have $\operatorname{var}(X_i^{(l)}) = d^{(l-1)} V^{(l)} \operatorname{var}(X_j^{(l-1)})/2.$
- We have $\operatorname{var}(Y_{ij}^{(l)}) = d^{(l-1)} V^{(l)} \operatorname{var}(Y_{kj}^{(l-1)})/2.$
- What happens when the widths $d^{(l)}$ tend to $+\infty?$
- Choosing $V^{(l)} = \Theta(1/d^{(l-1)})$ gives $\operatorname{var}(X_i^{(l)}) = \Theta(1)$ and $\operatorname{var}(Y_{ij}^{(l)}) = \Theta(1)$.

Infinite width limit

- With proper normalization of the weights $V^{(l)} = \Theta(1/d^{(l-1)})$, the variances are controlled.
- When all widths $d^{(l)} \to +\infty$, we can **totally characterize** the behavior of $X^{(l)}$ and $Y^{(l)}$.

Infinite width limit

- With proper normalization of the weights $V^{(l)} = \Theta(1/d^{(l-1)})$, the variances are controlled.
- When all widths $d^{(l)} \to +\infty$, we can **totally characterize** the behavior of $X^{(l)}$ and $Y^{(l)}$.

Distribution of the output

Assumptions: W^(l)_{ij} are iid, symmetric and of variance V^(l) = 1/d^(l-1).
 Recall X^(l)_i = ∑_j W^(l)_{ij}σ(X^(l-1)_j), and (X^(l)_{i∈[1,d^(l)]} are ident. distr. and symmetric.

Infinite width limit

- With proper normalization of the weights $V^{(l)} = \Theta(1/d^{(l-1)})$, the variances are controlled.
- When all widths $d^{(l)} \to +\infty$, we can **totally characterize** the behavior of $X^{(l)}$ and $Y^{(l)}$.

Distribution of the output

- Assumptions: $W_{ij}^{(l)}$ are iid, symmetric and of variance $V^{(l)} = 1/d^{(l-1)}$.
- ▶ Recall $X_i^{(l)} = \sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)})$, and $(X_i^{(l)})_{i \in \llbracket 1, d^{(l)} \rrbracket}$ are ident. distr. and symmetric.
- As the widths tend to infinity, the $(X_i^{(l)})_{i \in [\![1,d^{(l)}]\!]}$ become **independent**.

Infinite width limit

- With proper normalization of the weights $V^{(l)} = \Theta(1/d^{(l-1)})$, the variances are controlled.
- When all widths $d^{(l)} \to +\infty$, we can **totally characterize** the behavior of $X^{(l)}$ and $Y^{(l)}$.

Distribution of the output

- Assumptions: $W_{ij}^{(l)}$ are iid, symmetric and of variance $V^{(l)} = 1/d^{(l-1)}$.
- $\blacktriangleright \text{ Recall } X_i^{(l)} = \sum_j W_{ij}^{(l)} \sigma(X_j^{(l-1)}) \text{, and } (X_i^{(l)})_{i \in \llbracket 1, d^{(l)} \rrbracket} \text{ are ident. distr. and symmetric.}$
- As the widths tend to infinity, the $(X_i^{(l)})_{i \in [\![1,d^{(l)}]\!]}$ become **independent**.
- By the CLT, $X_i^{(l)}$ converges in law to a centrered Gaussian of variance $\mathbb{E}(\sigma(X_1^{(l-1)})^2)$.

Lemma (independence)

If $(X_i^{(l-1)})_{i \in [\![1,d^{(l-1)}]\!]}$ are independent, then $(X_i^{(l)})_{i \in [\![1,d^{(l)}]\!]}$ converge in law to independent Gaussian random variables.

Lemma (independence)

If $(X_i^{(l-1)})_{i \in [\![1,d^{(l-1)}]\!]}$ are independent, then $(X_i^{(l)})_{i \in [\![1,d^{(l)}]\!]}$ converge in law to independent Gaussian random variables.

Proof.

- As $W_{ij}^{(l)}\sigma(X_j^{(l-1)})$ are iid and of bounded variance, the CLT implies that $X_i^{(l)} = \sum_j W_{ij}^{(l)}\sigma(X_j^{(l-1)})$ converge in law to a Gaussian random variable.
- As $\mathbb{E}(X_i^{(l)}X_j^{(l)}) = 0$, the limits are also uncorrelated.
- ▶ Two Gaussian r.v. that are uncorrelated are necessarily independent.

Definition (Gaussian process)

Gaussian process is a collection $(\xi_x)_{x \in \mathbb{R}^d}$ of random variables such that every finite collection $(\xi_{x_1}, \ldots, \xi_{x_n})$ has a multivariate Gaussian distribution.

Properties

- A Gaussian process is totally defined by its mean $\mu(x) = \mathbb{E}(\xi_x)$ and covariance kernel $\Sigma(x, y) = \operatorname{cov}(\xi_x, \xi_y)$ for $x, y \in \mathbb{R}^d$.
- ▶ The kernel controls the regularity of the function.

MASH Master 2, PSI

Mathematics of Deep Learning, 2024

Theorem (Neal, 1994; Daniely et.al., 2016)

When the widths $d^{(l)}$ tend to infinity, the intermediate outputs $g_{\theta}^{(2l-1)}(x)_i$ converge in law to iid centered Gaussian processes of kernel $\Sigma^{(L)}$ where

$$\Sigma^{(1)}(x,y) = \frac{1}{d^{(0)}} x^{\top} y$$

$$\Sigma^{(l+1)}(x,y) = \mathbb{E}_{\xi \sim \mathcal{N}(0,\Sigma^{(l)})}(\sigma(\xi_x)\sigma(\xi_y))$$

where $\mathcal{N}(0, \Sigma^{(l)})$ is a Gaussian process of covariance $\Sigma^{(l)}$.

• Each coordinate of the output $g_{\theta}(x)_i$ is thus a centered Gaussian process of covariance $\Sigma^{(L)}$.

- A similar result holds for the Jacobians $J_{g,x}(x,\theta)$ and $J_{g,\theta}(x,\theta)$.
- Coordinates of the Jacobian converge to centered Gaussian random variables.

- A similar result holds for the Jacobians $J_{g,x}(x,\theta)$ and $J_{g,\theta}(x,\theta)$.
- Coordinates of the Jacobian converge to centered Gaussian random variables.
- ▶ However, for $J_{g,\theta}(x,\theta) \in \mathbb{R}^{d^{(L)} \times p}$, the number of coordinates also tends to infinity, and this is not well suited to describe the behavior of the whole Jacobian.

- A similar result holds for the Jacobians $J_{g,x}(x,\theta)$ and $J_{g,\theta}(x,\theta)$.
- Coordinates of the Jacobian converge to centered Gaussian random variables.
- ▶ However, for $J_{g,\theta}(x,\theta) \in \mathbb{R}^{d^{(L)} \times p}$, the number of coordinates also tends to infinity, and this is not well suited to describe the behavior of the whole Jacobian.
- Instead, we consider the convergence of the Neural Tangent Kernel, that will capture the impact of gradient descent on the output value.

- A similar result holds for the Jacobians $J_{g,x}(x,\theta)$ and $J_{g,\theta}(x,\theta)$.
- Coordinates of the Jacobian converge to centered Gaussian random variables.
- ▶ However, for $J_{g,\theta}(x,\theta) \in \mathbb{R}^{d^{(L)} \times p}$, the number of coordinates also tends to infinity, and this is not well suited to describe the behavior of the whole Jacobian.
- Instead, we consider the convergence of the Neural Tangent Kernel, that will capture the impact of gradient descent on the output value.

Definition (NTK)

The Neural Tangent Kernel of a model g_{θ} is the function $\kappa_{g,\theta}^{\text{NTK}} : \mathbb{R}^{d^{(0)}} \times \mathbb{R}^{d^{(L)} \times d^{(L)}}$:

$$\kappa_{g,\theta}^{\mathsf{NTK}}(x,y) = J_{g,\theta}(x,\theta) \times J_{g,\theta}(y,\theta)^{\top}$$

• If we make a stochastic gradient step for the objective $\frac{1}{N}\sum_{i} \ell(g_{\theta}(x_i), y_i)$, then, as a first order approximation, we have

$$g_{\theta_{t+1}}(x) \approx g_{\theta_t}(x) + J_{g,\theta}(x,\theta_t)(\theta_{t+1} - \theta_t)$$

• If we make a stochastic gradient step for the objective $\frac{1}{N}\sum_{i} \ell(g_{\theta}(x_i), y_i)$, then, as a first order approximation, we have

$$\begin{array}{rcl} g_{\theta_{t+1}}(x) &\approx & g_{\theta_t}(x) + J_{g,\theta}(x,\theta_t)(\theta_{t+1} - \theta_t) \\ &= & g_{\theta_t}(x) - \eta J_{g,\theta}(x,\theta_t) \times J_{g,\theta}(x_t,\theta_t)^\top \times \nabla_x \ell(g_{\theta_t}(x_t),y_t) \end{array}$$

• If we make a stochastic gradient step for the objective $\frac{1}{N}\sum_{i} \ell(g_{\theta}(x_i), y_i)$, then, as a first order approximation, we have

$$\begin{array}{lll} g_{\theta_{t+1}}(x) &\approx & g_{\theta_t}(x) + J_{g,\theta}(x,\theta_t)(\theta_{t+1} - \theta_t) \\ &= & g_{\theta_t}(x) - \eta \, J_{g,\theta}(x,\theta_t) \times J_{g,\theta}(x_t,\theta_t)^\top \times \nabla_x \ell(g_{\theta_t}(x_t),y_t) \\ &= & g_{\theta_t}(x) - \eta \, \kappa_{g,\theta_t}^{\mathsf{NTK}}(x,x_t) \times \nabla_x \ell(g_{\theta_t}(x_t),y_t) \end{array}$$

• If we make a stochastic gradient step for the objective $\frac{1}{N}\sum_{i} \ell(g_{\theta}(x_i), y_i)$, then, as a first order approximation, we have

$$\begin{array}{rcl} g_{\theta_{t+1}}(x) &\approx & g_{\theta_t}(x) + J_{g,\theta}(x,\theta_t)(\theta_{t+1} - \theta_t) \\ &= & g_{\theta_t}(x) - \eta \, J_{g,\theta}(x,\theta_t) \times J_{g,\theta}(x_t,\theta_t)^\top \times \nabla_x \ell(g_{\theta_t}(x_t),y_t) \\ &= & g_{\theta_t}(x) - \eta \, \kappa_{g,\theta_t}^{\mathsf{NTK}}(x,x_t) \times \nabla_x \ell(g_{\theta_t}(x_t),y_t) \end{array}$$

▶ This behaves as if we added the function $x \mapsto \kappa_{g,\theta_t}^{\text{NTK}}(x, x_t)$ weighted depending on the gradient of the loss $\nabla_x \ell(g_{\theta_t}(x_t), y_t)$ at the current data point.

Convergence of the NTK

Theorem (Jacot et. al., 2018)

If the activation function σ is Lipschitz, as the widths $d^{(l)}$ tend to $+\infty$, the NTK at initialization $\kappa_{g,\theta_0}^{\text{NTK}}$ converges in probability to a deterministic limiting kernel

$$\kappa_{g,\theta_0}^{\mathrm{NTK}}(x,y) \to \kappa_\infty^{(L)}(x,y) \otimes \mathrm{Id}_{d^{(L)}}(x,y) \otimes$$

where the scalar kernel $\kappa_{\infty}^{(L)}: \mathbb{R}^{d^{(0)}} \times \mathbb{R}^{d^{(0)}} \to \mathbb{R}$ is defined by

$$\kappa_{\infty}^{(1)}(x,y) = \Sigma^{(1)}(x,y) \kappa_{\infty}^{(l+1)}(x,y) = \kappa_{\infty}^{(l)}(x,y) \times \dot{\Sigma}^{(l+1)}(x,y) + \Sigma^{(l+1)}(x,y)$$

where $\dot{\Sigma}^{(l+1)}(x,y) = \mathbb{E}_{\xi \sim \mathcal{N}(0,\Sigma^{(l)})}(\sigma'(\xi_x)\sigma'(\xi_y)).$

Behavior around initialization in the infinite-width limit Spectrum of the Hessian and linear approximation

• What happens when $\theta \neq \theta_0$?

- What happens when $\theta \neq \theta_0$?
- If $\|\theta \theta_0\|_2 \leqslant R$ where R > 0 is small, then

$$g_{\theta}(x) \approx g_{\theta_0}(x) + J_{g,\theta}(x,\theta_0)(\theta - \theta_0)$$

and the behavior is also Gaussian.

- What happens when $\theta \neq \theta_0$?
- If $\|\theta \theta_0\|_2 \leqslant R$ where R > 0 is small, then

$$g_{\theta}(x) \approx g_{\theta_0}(x) + J_{g,\theta}(x,\theta_0)(\theta - \theta_0)$$

and the behavior is also Gaussian.

• How far can we go around θ_0 ?

- What happens when $\theta \neq \theta_0$?
- If $\|\theta \theta_0\|_2 \leqslant R$ where R > 0 is small, then

$$g_{\theta}(x) \approx g_{\theta_0}(x) + J_{g,\theta}(x,\theta_0)(\theta - \theta_0)$$

and the behavior is also Gaussian.

- How far can we go around θ_0 ?
- Using Taylor-Lagrange inequality, we can control the quality of a first-order approximation by the spectral norm of the Hessian:

$$\|g_{\theta}(x) - g_{\theta_0}(x) - J_{g,\theta}(x,\theta_0)(\theta - \theta_0)\|_2 \leq \frac{\max_{\theta' \in \mathcal{B}(\theta_0,R)} \lambda_{\max}\left(H_{g_{\theta'}}(x)\right)R^2}{2}$$

Bound on the spectral norm of the Hessian

Theorem (Daniely et.al., 2016 ; Lee et.al., 2019 ; Liu et. al., 2020)

Let $d^{(1)} = \ldots = d^{(L-1)} = d$. Given any fixed R > 0 and any $\theta \in \mathcal{B}(\theta_0, R)$, with high probability, we have

$$\lambda_{\max}\left(H_{g_{\theta}}(x)\right) = \widetilde{O}\left(\frac{1}{\sqrt{d}}\right)$$

As a consequence, we have

$$g_{\theta}(x) \approx g_{\theta_0}(x) + J_{g,\theta}(x,\theta_0)(\theta - \theta_0) + \widetilde{O}\left(\frac{1}{\sqrt{d}}\right)$$

In the infinite-width limit, the **neural network is linear** w.r.t. θ !

Behavior during training in the infinite-width limit Gaussian process + NTK = trained neural network

Short recap

▶ We know the behavior of the output value and Jacobian at initialization.

Short recap

- ▶ We know the behavior of the output value and Jacobian at initialization.
- ▶ We know that the model is linear with respect to the parameters.

Short recap

- ▶ We know the behavior of the output value and Jacobian at initialization.
- We know that the model is linear with respect to the parameters.
- We can describe what happens after t iterations of SGD.

Short recap

- ▶ We know the behavior of the output value and Jacobian at initialization.
- We know that the model is linear with respect to the parameters.
- We can describe what happens after t iterations of SGD.

Impact of SGD on the output value

$$\blacktriangleright \text{ With } v_t = \nabla_x \ell(g_{\theta_t}(x_t), y_t) \text{, we have } \theta_{t+1} = \theta_t - \eta J_{g,\theta}(x_t, \theta_t) v_t \text{ and }$$

$$g_{\theta_T}(x) = g_{\theta_0}(x) - \eta \sum_{t=1}^{T-1} \kappa_{g,\theta_0}^{\mathsf{NTK}}(x, x_t) v_t + \widetilde{O}\left(\frac{1}{\sqrt{d}}\right)$$
Random Gaussian process Deterministic NTK kernel Negligible second-order

Discussion

- The same analysis was extended to other neural network architectures such as CNNs, RNNs and GNNs.
- In the infinite-width limit, the NTK gives the impact of a data point on the trained model.
- Moreover, the model is linear, so the objective function is convex... and optimization is simple.
- ► For real architectures though, more work is needed to assess if the widths are sufficiently large, i.e. if the model is sufficiently **over-parameterized**.

Over-parameterized neural networks When are the widths *nearly infinite*?

Over-parameterized neural networks

Lazy training (Chizat et.al., 2019)

> At each step of SGD, we want a significant drop in the loss:

$$\frac{\mathcal{L}(\theta_{t+1}) - \mathcal{L}(\theta_t)}{\mathcal{L}(\theta_t)} \approx \frac{\eta \|\nabla \mathcal{L}(\theta_t)\|^2}{\mathcal{L}(\theta_t)} \qquad \text{``not negligible''}$$

At the same time, we want the Jacobian of the model to be almost constant:

$$\frac{\|J_{g,\theta}(x,\theta_{t+1}) - J_{g,\theta}(x,\theta_t)\|}{\|J_{g,\theta}(x,\theta_t)\|} \approx \frac{\eta \|\nabla \mathcal{L}(\theta_t)\| \|H_{g_{\theta_t}}\|}{\|J_{g,\theta}(x,\theta_t)\|} \qquad \text{``negligible''}$$

▶ For the MSE loss, we thus want the following ratio to be small around initialization:

$$\kappa_{g_{\theta}} = \frac{\mathcal{L}(\theta) \| H_{g_{\theta}} \|}{\| \nabla \mathcal{L}(\theta) \| \| J_{g,\theta}(x,\theta) \|} = \frac{\| g_{\theta} - y^* \| \| H_{g_{\theta}} \|}{\| J_{g,\theta}(x,\theta) \|} \ll 1$$

Theorem (PL condition for MSE loss)

Let $\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell(g_{\theta}(x_i), y_i)$ where $\ell(y, y') = \|y - y'\|_2^2$ and the model g_{θ} is such that

$$\sigma_{\min}\left(\left(J_{g,\theta}(x_1,\theta)^\top \mid \cdots \mid J_{g,\theta}(x_N,\theta)^\top\right)\right) \ge \varepsilon$$

then f verifies the μ -PL condition with $\mu = 4\varepsilon^2/N$.

Theorem (PL condition for MSE loss)

Let $\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell(g_{\theta}(x_i), y_i)$ where $\ell(y, y') = \|y - y'\|_2^2$ and the model g_{θ} is such that

$$\sigma_{\min}\left(\left(J_{g,\theta}(x_1,\theta)^\top \mid \cdots \mid J_{g,\theta}(x_N,\theta)^\top\right)\right) \ge \varepsilon$$

then f verifies the $\mu\text{-PL}$ condition with $\mu=4\varepsilon^2/N.$

Theorem (convergence of SGD with PL)

If \mathcal{L} is β -smooth and verifies the PL condition, then, with $\eta \leq \frac{1}{\beta}$, SGD achieves the precision

$$\mathbb{E}(\mathcal{L}(\theta_T) - \mathcal{L}(\theta^{\star})) \leq \Delta e^{-\mu\eta T/2} + \frac{\beta\eta\sigma^2}{\mu}$$

Exponential convergence rate $O(e^{-T})$ without noise, and $O(\ln(T)/T)$ otherwise.

MASH Master 2, PSL

With the NTK

The bound on the singular values of the Jacobian is equivalent to a bound on the eigenvalues of the NTK:

$$\lambda_{\min}\left(\left(\kappa_{g,\theta}^{\mathsf{NTK}}(x_i,x_j)\right)_{i,j\in[\![1,N]\!]}\right) \ge \varepsilon$$

With the NTK

The bound on the singular values of the Jacobian is equivalent to a bound on the eigenvalues of the NTK:

$$\lambda_{\min}\left(\left(\kappa_{g,\theta}^{\mathrm{NTK}}(x_i,x_j)\right)_{i,j\in [\![1,N]\!]}\right) \geqslant \varepsilon$$

• Moreover, as the Hessian controls the variation of the Jacobian, we have, for $\theta \in \mathcal{B}(\theta_0, R)$,

$$\lambda_{\min}\left(\left(\kappa_{g,\theta}^{\mathsf{NTK}}(x_i,x_j)\right)_{i,j\in [\![1,N]\!]}\right) \geqslant \lambda_{\min}\left(\left(\kappa_{g,\theta_0}^{\mathsf{NTK}}(x_i,x_j)\right)_{i,j\in [\![1,N]\!]}\right) - \widetilde{O}(NR/\sqrt{d})$$

Recap

For infinite-width neural networks:

- At initialization, the output is a centralized Gaussian process.
- > The spectral norm of the Hessian is negligible, and the model is linear w.r.t. its parameters.
- ▶ The Neural Tangent Kernel (NTK) converges to a deterministic kernel
- The output of the model during SGD training is fully characterized by the model's associated Gaussian process and NTK.
- ▶ For real neural networks, a ratio between the eigenvalues of the Hessian and Jacobian assess the *linearity* of the model.
- This ratio being small, the objective verifies the PL condition and training converges to zero loss.