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Behavior at initialization

Behavior at initialization in the infinite-width limit
From neural networks to Gaussian processes
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Behavior at initialization

Back to weight initialization

Variance of the output and Jacobian matrix for ReLU networks

§ With the notations: Xplq “ g
p2l´1q

θ pxq, Y plq “ J
g

p2l´1q

θ

pxq and varpW
plq
ij q “ V plq.

§ We have var
`

X
plq
i

˘

“ dpl´1q V plq var
`

X
pl´1q

j

˘

{2.

§ We have var
`

Y
plq
ij

˘

“ dpl´1q V plq var
`

Y
pl´1q

kj

˘

{2.

§ What happens when the widths dplq tend to `8?

§ Choosing V plq “ Θp1{dpl´1qq gives var
`

X
plq
i

˘

“ Θp1q and var
`

Y
plq
ij

˘

“ Θp1q.
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Behavior at initialization

Infinite-width limit of neural networks

Infinite width limit

§ With proper normalization of the weights V plq “ Θp1{dpl´1qq, the variances are controlled.

§ When all widths dplq Ñ `8, we can totally characterize the behavior of Xplq and Y plq.

Distribution of the output

§ Assumptions: W
plq
ij are iid, symmetric and of variance V plq “ 1{dpl´1q.

§ Recall X
plq
i “

ř

j W
plq
ij σpX

pl´1q

j q, and pX
plq
i qiPJ1,dplqK are ident. distr. and symmetric.

§ As the widths tend to infinity, the pX
plq
i qiPJ1,dplqK become independent.

§ By the CLT, X
plq
i converges in law to a centrered Gaussian of variance Epσ

`

X
pl´1q

1

˘2
q.
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Behavior at initialization

Infinite-width limit of neural networks

Lemma (independence)

If pX
pl´1q

i qiPJ1,dpl´1qK are independent, then pX
plq
i qiPJ1,dplqK converge in law to independent

Gaussian random variables.

Proof.

§ As W
plq
ij σpX

pl´1q

j q are iid and of bounded variance, the CLT implies that

X
plq
i “

ř

j W
plq
ij σpX

pl´1q

j q converge in law to a Gaussian random variable.

§ As EpX
plq
i X

plq
j q “ 0, the limits are also uncorrelated.

§ Two Gaussian r.v. that are uncorrelated are necessarily independent.
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Behavior at initialization

Infinite-width limit of neural networks

Definition (Gaussian process)

Gaussian process is a collection pξxqxPRd of random variables such that every finite
collection pξx1 , . . . , ξxnq has a multivariate Gaussian distribution.

Properties

§ A Gaussian process is totally defined by its mean µpxq “ Epξxq and covariance kernel
Σpx, yq “ covpξx, ξyq for x, y P Rd.

§ The kernel controls the regularity of the function.
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Behavior at initialization

Infinite-width limit of neural networks

Theorem (Neal, 1994 ; Daniely et.al., 2016)

When the widths dplq tend to infinity, the intermediate outputs g
p2l´1q

θ pxqi converge in law
to iid centered Gaussian processes of kernel ΣpLq where

Σp1qpx, yq “ 1
dp0qx

Jy

Σpl`1qpx, yq “ Eξ„N p0,Σplqqpσpξxqσpξyqq

where N p0,Σplqq is a Gaussian process of covariance Σplq.

§ Each coordinate of the output gθpxqi is thus a centered Gaussian process of
covariance ΣpLq.
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Behavior at initialization

Convergence of the Jacobian matrix

§ A similar result holds for the Jacobians Jg,xpx, θq and Jg,θpx, θq.

§ Coordinates of the Jacobian converge to centered Gaussian random variables.

§ However, for Jg,θpx, θq P RdpLqˆp, the number of coordinates also tends to infinity, and
this is not well suited to describe the behavior of the whole Jacobian.

§ Instead, we consider the convergence of the Neural Tangent Kernel, that will capture the
impact of gradient descent on the output value.

Definition (NTK)

The Neural Tangent Kernel of a model gθ is the function κNTK
g,θ : Rdp0q

ˆ Rdp0q

Ñ RdpLqˆdpLq

:

κNTK
g,θ px, yq “ Jg,θpx, θq ˆ Jg,θpy, θqJ
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Behavior at initialization

NTK and gradient descent

§ If we make a stochastic gradient step for the objective 1
N

ř

i ℓpgθpxiq, yiq, then, as a first
order approximation, we have

gθt`1pxq « gθtpxq ` Jg,θpx, θtqpθt`1 ´ θtq

“ gθtpxq ´ η Jg,θpx, θtq ˆ Jg,θpxt, θtq
J ˆ ∇xℓpgθtpxtq, ytq

“ gθtpxq ´ η κNTK
g,θt

px, xtq ˆ ∇xℓpgθtpxtq, ytq

§ This behaves as if we added the function x ÞÑ κNTK
g,θt

px, xtq weighted depending on the
gradient of the loss ∇xℓpgθtpxtq, ytq at the current data point.
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Behavior at initialization

Convergence of the NTK

Theorem (Jacot et. al., 2018)

If the activation function σ is Lipschitz, as the widths dplq tend to `8, the NTK at
initialization κNTK

g,θ0
converges in probability to a deterministic limiting kernel

κNTK
g,θ0px, yq Ñ κ

pLq
8 px, yq b IddpLq

where the scalar kernel κ
pLq
8 : Rdp0q

ˆ Rdp0q

Ñ R is defined by

κ
p1q
8 px, yq “ Σp1qpx, yq

κ
pl`1q
8 px, yq “ κ

plq
8 px, yq ˆ 9Σpl`1qpx, yq ` Σpl`1qpx, yq

where 9Σpl`1qpx, yq “ Eξ„N p0,Σplqqpσ
1pξxqσ1pξyqq.
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Behavior around initialization

Behavior around initialization in the infinite-width limit
Spectrum of the Hessian and linear approximation
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Behavior around initialization

Quality of the linear approximation

§ What happens when θ ‰ θ0?

§ If }θ ´ θ0}2 ď R where R ą 0 is small, then

gθpxq « gθ0pxq ` Jg,θpx, θ0qpθ ´ θ0q

and the behavior is also Gaussian.

§ How far can we go around θ0?

§ Using Taylor-Lagrange inequality, we can control the quality of a first-order approximation
by the spectral norm of the Hessian:

}gθpxq ´ gθ0pxq ´ Jg,θpx, θ0qpθ ´ θ0q}2 ď
maxθ1PBpθ0,Rq λmax

`

Hgθ1 pxq
˘

R2

2
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Behavior around initialization

Bound on the spectral norm of the Hessian

Theorem (Daniely et.al., 2016 ; Lee et.al., 2019 ; Liu et. al., 2020)

Let dp1q “ ... “ dpL´1q “ d. Given any fixed R ą 0 and any θ P Bpθ0, Rq, with high
probability, we have

λmax pHgθpxqq “ rO

ˆ

1
?
d

˙

§ As a consequence, we have

gθpxq « gθ0pxq ` Jg,θpx, θ0qpθ ´ θ0q ` rO

ˆ

1
?
d

˙

§ In the infinite-width limit, the neural network is linear w.r.t. θ!
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Behavior during training

Behavior during training in the infinite-width limit
Gaussian process + NTK = trained neural network
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Behavior during training

Behavior during training

Short recap

§ We know the behavior of the output value and Jacobian at initialization.

§ We know that the model is linear with respect to the parameters.

§ We can describe what happens after t iterations of SGD.

Impact of SGD on the output value

§ With vt “ ∇xℓpgθtpxtq, ytq, we have θt`1 “ θt ´ ηJg,θpxt, θtqvt and
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Behavior during training

Behavior during training

Discussion
§ The same analysis was extended to other neural network architectures such as CNNs,
RNNs and GNNs.

§ In the infinite-width limit, the NTK gives the impact of a data point on the trained model.

§ Moreover, the model is linear, so the objective function is convex... and optimization is
simple.

§ For real architectures though, more work is needed to assess if the widths are sufficiently
large, i.e. if the model is sufficiently over-parameterized.
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Over-parameterized neural networks

Over-parameterized neural networks
When are the widths nearly infinite?
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Over-parameterized neural networks

Over-parameterized neural networks

Lazy training (Chizat et.al., 2019)

§ At each step of SGD, we want a significant drop in the loss:

Lpθt`1q ´ Lpθtq

Lpθtq
«

η}∇Lpθtq}2

Lpθtq
“not negligible”

§ At the same time, we want the Jacobian of the model to be almost constant:

}Jg,θpx, θt`1q ´ Jg,θpx, θtq}

}Jg,θpx, θtq}
«

η}∇Lpθtq}}Hgθt
}

}Jg,θpx, θtq}
“negligible”

§ For the MSE loss, we thus want the following ratio to be small around initialization:

κgθ “
Lpθq}Hgθ}

}∇Lpθq}}Jg,θpx, θq}
“

}gθ ´ y˚}}Hgθ}

}Jg,θpx, θq}
! 1
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Over-parameterized neural networks

Back to the PL condition

Theorem (PL condition for MSE loss)

Let Lpθq “ 1
N

řN
i“1 ℓpgθpxiq, yiq where ℓpy, y1q “ }y ´ y1}22 and the model gθ is such that

σmin

ˆ

´

Jg,θpx1, θqJ
ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ
Jg,θpxN , θqJ

¯

˙

ě ε

then f verifies the µ-PL condition with µ “ 4ε2{N .

Theorem (convergence of SGD with PL)

If L is β-smooth and verifies the PL condition, then, with η ď 1
β , SGD achieves the

precision

EpLpθT q ´ Lpθ‹qq ď ∆e´µηT {2 `
βησ2

µ

Exponential convergence rate Ope´T q without noise, and OplnpT q{T q otherwise.
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EpLpθT q ´ Lpθ‹qq ď ∆e´µηT {2 `
βησ2

µ

Exponential convergence rate Ope´T q without noise, and OplnpT q{T q otherwise.
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Over-parameterized neural networks

Back to the PL condition

With the NTK
§ The bound on the singular values of the Jacobian is equivalent to a bound on the
eigenvalues of the NTK:

λmin

´

`

κNTK
g,θ pxi, xjq

˘

i,jPJ1,NK

¯

ě ε

§ Moreover, as the Hessian controls the variation of the Jacobian, we have, for θ P Bpθ0, Rq,

λmin

´

`

κNTK
g,θ pxi, xjq

˘

i,jPJ1,NK

¯

ě λmin

´

`

κNTK
g,θ0pxi, xjq

˘

i,jPJ1,NK

¯

´ rOpNR{
?
dq
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Over-parameterized neural networks

Recap

§ For infinite-width neural networks:
§ At initialization, the output is a centralized Gaussian process.
§ The spectral norm of the Hessian is negligible, and the model is linear w.r.t. its parameters.
§ The Neural Tangent Kernel (NTK) converges to a deterministic kernel
§ The output of the model during SGD training is fully characterized by the model’s associated

Gaussian process and NTK.

§ For real neural networks, a ratio between the eigenvalues of the Hessian and Jacobian
assess the linearity of the model.

§ This ratio being small, the objective verifies the PL condition and training converges to
zero loss.
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