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Behavior at initialization

Behavior at initialization in the infinite-width limit

From neural networks to Gaussian processes
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Behavior at initialization
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Variance of the output and Jacobian matrix for ReLU networks

With the notations: X = g(2l_1)(a:), YO = Jg(2l—1)( x) and Var(W( )) 17408
(4

We have var (X ()) A=y yar (X(l 1))/2_
We have var (Y.") = d¢D v var (171 /2.
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Behavior at initialization
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Variance of the output and Jacobian matrix for ReLU networks

With the notations: X = g(2l_1)(a:), YO = Jg(2l—1)( x) and var(W( )) 17408
0

We have var (X xU )) d=D v O yar ( ](l—l))/Q_
We have var (Y;g)) = d=D vy yar (Y]c(;—l))/2‘

What happens when the widths d*) tend to +00?
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Behavior at initialization
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Variance of the output and Jacobian matrix for ReLU networks
With the notations: X = (2l_1)(a:), Yy® = Jg§2l—1)( x) and va,r(W(J)) 17408
We have var (X ()) d=D VO var (X(l 1))/2.
We have var (Ylgl)) =d=V VO var ( k]l. VY2,
What happens when the widths d)) tend to +0?
Choosing V() = ©(1/d~1) gives var (Xi(l)) = 0O(1) and var (Y(z)) =0(1).

ij
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Behavior at initialization

Infinite width limit
With proper normalization of the weights V() = ©(1/d~1)), the variances are controlled.
When all widths d) — +00, we can totally characterize the behavior of X() and Y1),
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Behavior at initialization

Infinite width limit
With proper normalization of the weights V() = ©(1/d~1)), the variances are controlled.
When all widths d) — +00, we can totally characterize the behavior of X() and Y1),

Distribution of the output

Assumptions: W-(D

Recall X( =2, Wi 0 o(X; x = 1)) and (X'(l))ie[[l,d(l)]] are ident. distr. and symmetric.

)

are iid, symmetric and of variance V() = 1/d(=1),
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Behavior at initialization

Infinite width limit
With proper normalization of the weights V() = ©(1/d~1)), the variances are controlled.
When all widths d) — +00, we can totally characterize the behavior of X() and Y1),

Distribution of the output

Assumptions: W-(D

Recall X(l =2, Wi © o(X; x = 1)) and (Xi(l))ie[[l,d(l)]] are ident. distr. and symmetric.

are iid, symmetric and of variance V() = 1/d(=1),

As the widths tend to infinity, the (X'(l))ie[[l,d(l)]] become independent.

K3
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Behavior at initialization

Infinite width limit
With proper normalization of the weights V() = ©(1/d~1)), the variances are controlled.
When all widths d) — +00, we can totally characterize the behavior of X() and Y1),
Distribution of the output
Assumptions: W-(D are iid, symmetric and of variance V() = 1/d(l_1).
Recall X(l =2, Wi 0 o(X; x = 1)) and (Xi(l))ie[[l,d(l)]] are ident. distr. and symmetric.
As the widths tend to infinity, the (X;l))ie[[l’d(z)]] become independent.

By the CLT, Xi(l) converges in law to a centrered Gaussian of variance E(o (Xl(l_l))2).
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Behavior at initialization

Lemma (independence)

If (ngl_l))ie[[17d(zfl)]] are independent, then (Xi(l))ielll,d(l)]] converge in law to independent
Gaussian random variables.
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Behavior at initialization

Lemma (independence)

If (ngl_l))ie[[17d<zfl)]] are independent, then (Xi(l))ielll,d(l)]] converge in law to independent
Gaussian random variables.

Proof.
As Wi(jl)a(XJ(l_l)) are iid and of bounded variance, the CLT implies that
Xi(l) = Zj VVS)J(X](.I*D) converge in law to a Gaussian random variable.

As ]E(Xi(l)X](-l)) = 0, the limits are also uncorrelated.

Two Gaussian r.v. that are uncorrelated are necessarily independent.
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Behavior at initialization

Definition (Gaussian process)
Gaussian process is a collection (£;),cra of random variables such that every finite
collection (&5, . ..,&z,) has a multivariate Gaussian distribution.

Properties
A Gaussian process is totally defined by its mean p(x) = E(&,) and covariance kernel
Y(z,y) = cov(&y, &) for z,y € R,
The kernel controls the regularity of the function.

llz—21* 2
r«':exp(T> x=min(z,2) 2 k=@ 2 +e)
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Behavior at initialization

Theorem (Neal, 1994 ; Daniely et.al., 2016)

When the widths d(®) tend to infinity, the intermediate outputs gémfl)(x)i converge in law
to iid centered Gaussian processes of kernel $(X) where

2W(z,y) = zme'y
S (@) = Eeonomon (0(6)o (&)

where A/(0,21)) is a Gaussian process of covariance X(1).

Each coordinate of the output gg(x); is thus a centered Gaussian process of
covariance 20,
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Behavior at initialization

A similar result holds for the Jacobians J, .(x,6) and J, ¢(x,6).

Coordinates of the Jacobian converge to centered Gaussian random variables.
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Behavior at initialization

A similar result holds for the Jacobians J, .(x,0) and Jy¢(x,0).
Coordinates of the Jacobian converge to centered Gaussian random variables.

However, for J,¢(z,0) € R4 P the number of coordinates also tends to infinity, and
this is not well suited to describe the behavior of the whole Jacobian.
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However, for J,¢(z,0) € R4 P the number of coordinates also tends to infinity, and
this is not well suited to describe the behavior of the whole Jacobian.

Instead, we consider the convergence of the Neural Tangent Kernel, that will capture the
impact of gradient descent on the output value.
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Behavior at initialization

A similar result holds for the Jacobians J, .(x,0) and Jy¢(x,0).
Coordinates of the Jacobian converge to centered Gaussian random variables.

However, for J,¢(z,0) € R4 P the number of coordinates also tends to infinity, and
this is not well suited to describe the behavior of the whole Jacobian.

Instead, we consider the convergence of the Neural Tangent Kernel, that will capture the
impact of gradient descent on the output value.

Definition (NTK)

. . L L
The Neural Tangent Kernel of a model gy is the function K;zToK - RAY xR, AP xdD).

Iigj—ﬁK(‘Tay) = Jg,@(x79) X Jg,@(ya H)T
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Behavior at initialization

If we make a stochastic gradient step for the objective & 3", £(ga(x;), i), then, as a first
order approximation, we have

9611 (r) ~ go, () + Jg,G(xaat)(et—i-l —0y)
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Behavior at initialization

If we make a stochastic gradient step for the objective & 3", £(ga(x;), i), then, as a first
order approximation, we have

9611 (r) ~ go, () + Jg,0($,9t)(9t+1 —0y)
= get(m) - nJg,9($70t) X Jg,e(fﬂt,et)T X Vme(get(xt)ayt)
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Behavior at initialization

If we make a stochastic gradient step for the objective & >, £(go(2;), ;), then, as a first
order approximation, we have

9611 (r) ~ go,(z) + J, ,6($79t)(9t+1 —0y)
96, (:L') -1 Jgﬂ(wv 075) X Jg,a(l'tv et)T X Vme(get (xt)a yt)

NTK

90, (x) — n kgl (z, 3) x Val(go, (xt), Y1)
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Behavior at initialization

If we make a stochastic gradient step for the objective & >, £(go(2;), ;), then, as a first
order approximation, we have

96,41 (SC) ~ g, (CC) + Jg,@(m,at)(et—i-l - et)
g6, (z) — 77Jg,0($79t) X Jg,e(l“t, 9t)T X me(get (w¢),yt)
96, (x) - 77"5319}1 (CC, xt) x vxe(g% (.’L‘t), yt)

This behaves as if we added the function z — mgxg’i (x,2¢) weighted depending on the

gradient of the loss V¢(gg,(x¢),y:) at the current data point.
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Behavior at initialization

Theorem (Jacot et. al., 2018)

If the activation function o is Lipschitz, as the widths d(¥) tend to +o0, the NTK at

initialization HETQKO converges in probability to a deterministic limiting kernel

NTK

L
R (2,) — w5 (2, y) ® Idyiey
where the scalar kernel £2) : R4 x RY” s R is defined by

wi (@) = 2W(y)
K;(()éﬂ)(w,y) _ R((;é)(ﬂf,y) x DD (2, ) + 2D (2, 1)

where 24D (2, 7)) = Ee nr0,50) (0" (&)’ (&y))-
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Behavior around initialization

Behavior around initialization in the infinite-width limit

Spectrum of the Hessian and linear approximation
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Behavior around initialization

» What happens when 6 # 6,7
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Behavior around initialization

What happens when 6 # 6y?
If |0 — 6p|2 < R where R > 0 is small, then

90(x) ~ go, () + Jg0(z,00)(0 — o)

and the behavior is also Gaussian.
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What happens when 6 # 6y?
If |0 — 6p|2 < R where R > 0 is small, then

90(x) ~ go, () + Jg0(z,00)(0 — o)

and the behavior is also Gaussian.

How far can we go around 6,7
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Behavior around initialization

What happens when 6 # 6y?
If |0 — 6p|2 < R where R > 0 is small, then

9o(x) ~ go,(x) + Jg0(z,60)(0 — b)

and the behavior is also Gaussian.
How far can we go around 6,7

Using Taylor-Lagrange inequality, we can control the quality of a first-order approximation
by the spectral norm of the Hessian:

IIlaXQIEB(907R) >\max (Hgg, (SC)) R2
2

ng(x) — 96, (.’L‘) - Jg,g(l‘, 90)(0 - 00)”2 <
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Behavior around initialization

Theorem (Daniely et.al., 2016 ; Lee et.al., 2019 ; Liu et. al., 2020)
Let dV) = ... = dE=Y) = d. Given any fixed R > 0 and any 0 € B(y, R), with high

probability, we have
~ (1
s (i () = 0 (72

As a consequence, we have

90(x) ~ go, () + Jy0(x,00) (0 — 6p) + O (\/LE)

In the infinite-width limit, the neural network is linear w.r.t. 6!
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Behavior during training

Behavior during training in the infinite-width limit

Gaussian process + NTK = trained neural network
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Behavior during training

Short recap

» We know the behavior of the output value and Jacobian at initialization.
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Behavior during training

Short recap
We know the behavior of the output value and Jacobian at initialization.

We know that the model is linear with respect to the parameters.
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Behavior during training

Short recap
We know the behavior of the output value and Jacobian at initialization.
We know that the model is linear with respect to the parameters.

We can describe what happens after ¢ iterations of SGD.
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Behavior during training

Short recap
We know the behavior of the output value and Jacobian at initialization.
We know that the model is linear with respect to the parameters.

We can describe what happens after ¢ iterations of SGD.

Impact of SGD on the output value
With v, = V,0(gs, (x¢),y¢), we have 6,11 = 0, — nJgg(xt,0;)v; and

1
9o, (z) = g, () — 7 Z Ky o (2, T )V + O (ﬁ)

Random Gaussian process Deterministic NTK kernel Negligible second-order
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Behavior during training

Discussion

The same analysis was extended to other neural network architectures such as CNNs,
RNNs and GNNs.

In the infinite-width limit, the NTK gives the impact of a data point on the trained model.

Moreover, the model is linear, so the objective function is convex... and optimization is
simple.

For real architectures though, more work is needed to assess if the widths are sufficiently
large, i.e. if the model is sufficiently over-parameterized.
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Over-parameterized neural networks

Over-parameterized neural networks

When are the widths nearly infinite?
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Over-parameterized neural networks

Lazy training (Chizat et.al., 2019)

At each step of SGD, we want a significant drop in the loss:

L(0141) = LO) _ n[VLEO)?

£ £(6r) not negligible

At the same time, we want the Jacobian of the model to be almost constant:

|Jg0(x, 0i41) — Jg0(x, 0 N n| VL) || Hgy, | “negligible”
[Tg0(,61)] [Tg0(, 0] e

For the MSE loss, we thus want the following ratio to be small around initialization:

()1 R P [ A
= VL@ a0 (w0~ [Tpa(z.0)]
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Over-parameterized neural networks

Theorem (PL condition for MSE loss)
Let £L(9) = %Zf\; U(gg(x:),y:;) where £(y,y") = |y — ¥/|% and the model gy is such that

amin(<Jg,9(m1,9)T ‘ ‘ Jg,e(ﬂﬁN,G)T)) S

then f verifies the u-PL condition with u = 4¢2/N.
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Over-parameterized neural networks

Theorem (PL condition for MSE loss)
Let £L(9) = %2511 U(gg(x:),y:;) where £(y,y") = |y — ¥/|% and the model gy is such that

O'min(<r]g,6(xla H)T ‘ s ‘ Jg79($N,9)T)> =€
then f verifies the u-PL condition with u = 4¢2/N.

Theorem (convergence of SGD with PL)

If £ is S-smooth and verifies the PL condition, then, with 1 < % SGD achieves the

precision Bno?

E(L(07) — L(0*)) < Ae—rnT/2 1 P17
1

Exponential convergence rate O(e~1) without noise, and O(In(T")/T)) otherwise.
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Over-parameterized neural networks

With the NTK

The bound on the singular values of the Jacobian is equivalent to a bound on the
eigenvalues of the NTK:

/\min ((K‘ZTOK(mi’ xj))l,JelIl’N]]) 2 c
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Over-parameterized neural networks

With the NTK

The bound on the singular values of the Jacobian is equivalent to a bound on the
eigenvalues of the NTK:

Amin ((K’ZTGK(xi?xj))i,je[[l,N]]) =€

Moreover, as the Hessian controls the variation of the Jacobian, we have, for 6 € B(6y, R),

M (35 @30 20)), e g) = Ao (505 (@120)), 1o ag) = OVE/VA)
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Over-parameterized neural networks

For infinite-width neural networks:
At initialization, the output is a centralized Gaussian process.
The spectral norm of the Hessian is negligible, and the model is linear w.r.t. its parameters.
The Neural Tangent Kernel (NTK) converges to a deterministic kernel
The output of the model during SGD training is fully characterized by the model’s associated
Gaussian process and NTK.
For real neural networks, a ratio between the eigenvalues of the Hessian and Jacobian
assess the linearity of the model.
This ratio being small, the objective verifies the PL condition and training converges to
zero loss.
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