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Next week (19/03/2023).
Documents allowed.
From 8:30am to 10:30am (2h).

Similar to the homework.
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Generative models

Generative models

Beyond classification tasks
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Generative models

Generative vs. discriminative
Discriminative tasks such as classification aim at separating data.
Generative tasks aim at creating new data.

Discriminative tasks Generative tasks
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Generative models

Image generation (face generation, deepfakes, ...).

this-person.

source: https://this-person-does-not-exist.com/en
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Generative models

Image generation (face generation, deepfakes, ...).
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Generative models

Image generation (face generation, deepfakes, ...).
Prompt-based image generation (Dalle2, Imagen, MidjourneyAl, ...).

“extremely cute cat” |:> ‘Oa

source: MidjourneyAl. https://midjourney.com/
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Image generation (face generation, deepfakes, ...).
Prompt-based image generation (Dalle2, Imagen, MidjourneyAl, ...).
Text generation (Bert, GPT2, GPT3, ChatGPT, Bard, Sparrow, ...).

source: ChatGPT. https://chat.openai.com/
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Generative models

Key aspects of a generative model
We want to output complex data (e.g. images, text, ...).
We want to sample random outputs from a learnt distribution.
Usually involves more difficult optimization problems than standard ERM.

How do we measure performance?
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Generative models

Key aspects of a generative model
We want to output complex data (e.g. images, text, ...).
We want to sample random outputs from a learnt distribution.
Usually involves more difficult optimization problems than standard ERM.

How do we measure performance?

Three main approaches
Variational auto-encoders (VAEs)
Generative Adversarial Networks (GANSs)

Score-based generative models / diffusion models
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Generating random variables

Generating random variables

Classical approaches to sampling probability distributions
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Generating random variables

Approximating distributions with NNs
> Intuition: How do we create models whose outputs are random variables?
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Generating random variables

Approximating distributions with NNs
Intuition: How do we create models whose outputs are random variables?
Data: D, = (X1,...,X,) i.i.d. according to some target distribution D.
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Generating random variables

Approximating distributions with NNs
Intuition: How do we create models whose outputs are random variables?
Data: D, = (X1,...,X,) i.i.d. according to some target distribution D.

Objective: sample new elements X ~ D from the target distribution.

MASH Master 2, PSL Mathematics of Deep Learning, 2024 12/34



Generating random variables

Approximating distributions with NNs
Intuition: How do we create models whose outputs are random variables?
Data: D, = (X1,...,X,) i.i.d. according to some target distribution D.

Objective: sample new elements X ~ D from the target distribution.

Extensions

Prompt-based models: one data distribution per input query. Equivalent to supervised
learning with a random output.
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Generating random variables

Approximating distributions with NNs
Intuition: How do we create models whose outputs are random variables?
Data: D, = (X1,...,X,) i.i.d. according to some target distribution D.

Objective: sample new elements X ~ D from the target distribution.

Extensions

Prompt-based models: one data distribution per input query. Equivalent to supervised
learning with a random output.

Learn a density function: some models also provide a density function.

A No clear cut: classification tasks also generate probability distributions...
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Generating random variables

How to sample from a known distribution D7
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Generating random variables

Standard approaches

Parametric families of distributions: sampled by a simple function of a base
distribution. E.g. Gaussian X = p + oY where Y ~ N(0,1).
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Generating random variables

Standard approaches

Parametric families of distributions: sampled by a simple function of a base
distribution. E.g. Gaussian X = p + oY where Y ~ N(0,1).

Inversion sampling: For 1D r.v., we have X = F~1(Y) where Y ~ U([0,1]) is uniform
in [0,1] and F' is the cumulative distribution function of D.
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Generating random variables

Standard approaches

Parametric families of distributions: sampled by a simple function of a base
distribution. E.g. Gaussian X = p + oY where Y ~ N(0,1).

Inversion sampling: For 1D r.v., we have X = F~1(Y) where Y ~ U([0,1]) is uniform
in [0,1] and F' is the cumulative distribution function of D.

Monte-Carlo Markov Chains: Start with a base distribution (e.g. Gaussian), and
iteratively refine it to get closer and closer to the target distribution D.
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Generating random variables

Standard approaches

Parametric families of distributions: sampled by a simple function of a base
distribution. E.g. Gaussian X = p + oY where Y ~ N(0,1).

Inversion sampling: For 1D r.v., we have X = F~1(Y) where Y ~ U([0,1]) is uniform
in [0,1] and F' is the cumulative distribution function of D.

Monte-Carlo Markov Chains: Start with a base distribution (e.g. Gaussian), and
iteratively refine it to get closer and closer to the target distribution D.

How to use it for generative models?

Parameter modelling: Learn the parameters (i, o) = gg(x) to generate N(u, o).
Transformation: generate with gg(Y) ~ D where Y ~ N (0,1) (VAEs, GANs).

Dynamics: Learn iterative refinements that transform A(0, I) into D (diffusion).
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Variational Autoencoders

Variational Autoencoders (VAEs)

From compression to generation
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Variational Autoencoders

Objective: Learn a compressed data representation in an unsupervised manner.
Idea: Map data points to themselves gy(x) = = with small inner representation.
Loss: Let eg, dg be two NNs, we want to minimize E(||X — dy (eg(X))|?).

Encoder Decoder

Input Output
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Variational Autoencoders

Compression: If latent space is smaller than input space, information is compressed.

Generation: We can sample from the latent space.

°
2

°
2

°

|:> Decoder

sampling

Bivariate Normal PDF f(x,y)
°

Output
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Variational Autoencoders

The simplest possible autoencoder with a single affine layer as encoder and as decoder:

class AutoEncoder (nn.Module):
def __init__(self, input_dim, encoding_dim):
super (AutoEncoder, self).__init__()
self.encoder = nn.Linear(input_dim, encoding_dim)
self.decoder = nn.Linear(encoding_dim, input_dim)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
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After training, we obtain:
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Interpolation in latent space: We can interpolate between two images x and y with

To = dy (a ep(x) + (1 — ) e,g(y)>

for a € [0,1].
Results: Interpolation between digits 2 and 9.

zjz]2]2]5]2171717]17

Better than in the pixel space, but not perfect still...
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Variational Autoencoders

Interpolation in latent space: We can interpolate between two images x and y with
To = dy (a eg(x) + (1 — ) eg(y))

for a € [0,1].

Decoder

Output
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Variational Autoencoders

Limitations: There is no constraint on the regularity of the latent space embedding.
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similar once decoded

irregular latent space x V regular latent space

source: https: //towardsdatascience. com/understanding-variational-autoencoders-vaes-f70510919f73
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Variational Autoencoders

Objective: Regularize by forcing the embedding to be robust to noise.
Idea: The encoder returns the parameters (uz, 0;) = eg(x) of a Gaussian distribution.
We sample Z, ~ J\/'(,ux,ax) and minimize

min ~ Z i = dor(Ze,) | + i (N (pa 72,), N (0, 1))

0,00 1N “

where dy, (p, q) = Exwp(log(p( )/a(X))) measures the "distance” between p and q.

Decoder
sampllng

Input Output
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Variational Autoencoders

Benefits: Each image is pushed to be mapped to a normal distribution.

Sampling: We can sample new images with dy (Z) where Z ~ N(0,1).

N O_
o

what can happen without regularisation x

MASH Master 2, PSL

V what we want to obtain with regularisation
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Performance measures

Performance measures

When is our model good enough?
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Performance measures

Question: How should we measure distances between real and generated distributions?

Training dataset and Good fit!
underlying distribution
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Performance measures

Question: How should we measure distances between real and generated distributions?

Bad fit? Better fit!?
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Performance measures

We already saw that we can train a probabilistic model by maximizing the likelihood of
the training data points (approach used by most of statistics!).
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Performance measures

We already saw that we can train a probabilistic model by maximizing the likelihood of
the training data points (approach used by most of statistics!).

Equivalent to minimizing the negative log-likelihood:

n
N
o= Y o)

where (z1,...,x,) are the training data points and py is the density of the distribution.
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Performance measures

We already saw that we can train a probabilistic model by maximizing the likelihood of
the training data points (approach used by most of statistics!).

Equivalent to minimizing the negative log-likelihood:

n
N
o= Y o)

where (z1,...,x,) are the training data points and py is the density of the distribution.
Cons: Requires to have access to the density pg. Can overfit training data.
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Performance measures

We already saw that we can train a probabilistic model by maximizing the likelihood of
the training data points (approach used by most of statistics!).

Equivalent to minimizing the negative log-likelihood:
n

- N1 _

min . o)

where (z1,...,x,) are the training data points and py is the density of the distribution.
Cons: Requires to have access to the density pg. Can overfit training data.
This is equivalent to minimizing the Kullback-Leibler divergence dx 1, (P, pg), where:

R )

A~ 1
where p, = > 0z, and X ~ p.
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Performance measures

Wasserstein distance
Measures how similar are the two measures via evaluation functions:

dw (p,v) = sup [E(f(X)) —E(f(Y))]
selip,

where X ~ pu, Y ~ v and Lip, is the space of 1-Lipschitz functions.
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Performance measures

Wasserstein distance
Measures how similar are the two measures via evaluation functions:

dw (p,v) = sup [E(f(X)) —E(f(Y))]
selip,

where X ~ pu, Y ~ v and Lip, is the space of 1-Lipschitz functions.
Measures are similar if there is no way to distinguish them with (Lipschitz) statistics.

Another (equivalent) definition via optimal transport.
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Performance measures

Wasserstein distance
Measures how similar are the two measures via evaluation functions:

dw(pv) = sup [E(f(X)) ~ E(f(Y))
selip,
where X ~ pu, Y ~ v and Lip, is the space of 1-Lipschitz functions.
Measures are similar if there is no way to distinguish them with (Lipschitz) statistics.

Another (equivalent) definition via optimal transport.

Human evaluation
Compare the outputs and decide which generative model you prefer...

Limitations: subjective, and difficult to assess diversity.
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Generative Adversarial Networks

Generative Adversarial Networks (GANs)

Asking another NN if your NN is good enough
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Generative Adversarial Networks

Idea: Use another NN (discriminator) to compare true and generated images.

Discriminator finds mistakes in the generation, and generator learns to fool the critic.

Image training |:>

dataset L
sampling

|:> Generator

sampling

Re

al Ima

ge

Discriminator D

Binary classification
(real or fake?)

Generated image

MASH Master 2, PSL
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Generative Adversarial Networks

~ Generator: gy generates a fake sample gy(Z) with a Gaussian r.v. Z ~ N(0,1).
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Generative Adversarial Networks

Generator: gy generates a fake sample gg(Z) with a Gaussian r.v. Z ~ N(0,1).

Discriminator: dy is a classifier and dy (z) is the probability for x to be a real sample.
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Generative Adversarial Networks

Generator: gy generates a fake sample gg(Z) with a Gaussian r.v. Z ~ N(0,1).
Discriminator: dy is a classifier and dy (z) is the probability for x to be a real sample.
Learning: gy and dy are learnt alternatively, i.e. one is fixed when the other is learnt.

Loss: For real images (z1,...,%,) and generated images (g9(Z1), ..., 99(Zy)), we want

ma min £(0,6) = 3t (do(e) + 105 (1.~ do(sn(z)
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Generative Adversarial Networks

Generator: gy generates a fake sample gg(Z) with a Gaussian r.v. Z ~ N(0,1).
Discriminator: dy is a classifier and dy (z) is the probability for x to be a real sample.
Learning: gy and dy are learnt alternatively, i.e. one is fixed when the other is learnt.

Loss: For real images (z1,...,%,) and generated images (g9(Z1), ..., 99(Zy)), we want

ma min £(0,6) = 3t (do(e) + 105 (1.~ do(sn(z)

Interpretation: Discriminator minimizes its BCE loss, generator tries to maximize it.
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Generative Adversarial Networks

Descriptor: For a fixed generator gy, the optimal discriminator is ¢, = argming £(6,6’).

Generator: For a fixed dg/, optimal gen. is 0, = argmaxy —+ 3" | log (1 —dy (gg(zi))).
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Generative Adversarial Networks

Descriptor: For a fixed generator gy, the optimal discriminator is ¢, = argming £(6,6’).

Generator: For a fixed dg/, optimal gen. is 0, = argmaxy —+ 3" | log (1 —dy (gg(zi))).
Practice: This is often replaced by 6, = argmax, % > log (d9/ (gg(zi))>.

Intuition: When generator is weak compared to discriminator (i.e. dg/(gg(z)) < 1), the
modified loss boosts the learning of the generator thanks to its large grad. at 0.
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Generative Adversarial Networks

Descriptor: For a fixed generator gy, the optimal discriminator is ¢, = argming £(6,6’).

Generator: For a fixed dg/, optimal gen. is 6, = argmaxy —1 > | log (1 —dy (gg(zi))).

Practice: This is often replaced by 6, = argmax, % > log (dgl (gg(%))).

Intuition: When generator is weak compared to discriminator (i.e. dg/(gg(z)) < 1), the
modified loss boosts the learning of the generator thanks to its large grad. at 0.

Limitation: training extremely unstable, potential mode collapse.
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Generative Adversarial Networks

Descriptor: For a fixed generator gy, the optimal discriminator is ¢, = argming £(6,6’).

Generator: For a fixed dg/, optimal gen. is 6, = argmaxy —1 > | log (1 —dy (gg(Zi))).

n
Practice: This is often replaced by 6, = argmax, % > log (d@/ (gg(zi))>.
Intuition: When generator is weak compared to discriminator (i.e. dg/(gg(z)) < 1), the
modified loss boosts the learning of the generator thanks to its large grad. at 0.
Limitation: training extremely unstable, potential mode collapse.

Extensions: Wasserstein GANs (Arjovsky et.al., 2017) view the discriminator as the
probe function in Wasserstein distance. More principled and stable in practice.
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Generative Adversarial Networks

"Historical attempts to scale up GANs using CNNs to model images have been
unsuccessful. [...] However, after extensive model exploration we identified a family of
architectures that resulted in stable training across a range of datasets and allowed for
training higher resolution and deeper generative models.”
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Generative Adversarial Networks

"Historical attempts to scale up GANs using CNNs to model images have been
unsuccessful. [...] However, after extensive model exploration we identified a family of
architectures that resulted in stable training across a range of datasets and allowed for
training higher resolution and deeper generative models.”

Heuristics: 1) Replace pooling layers with strided (transposed) convolutions. 2) Use
batchnorm in both gy and dy. 3) Remove linear layers. 4) use ReLU in gy except for the
output using Tanh, and LeakyReLU in dy.

e ,
&=

w0z || emp )

T e

Project and reshape

source: Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. 2015.
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Generative Adversarial Networks

Generative models rely on learning to sample probability distributions.

VAEs use an Encoder-Decoder architecture to learn a low-dimensional latent
representation of the data distribution.

GANss use two adversarial networks trained alternatively (Generator and Discriminator).
To create images from low-dimensional vectors, we need to use transposed convolutions.

Training is very unstable, and requires lots of tricks in practice.
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