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Class overview

1. Introduction and general overview 16/01

2. Non-convex optimization 23/01

3. Structure of ReLU networks and group invariances 06/02

4. Approximation guarantees 13/02

5. Stability and robustness 20/02

6. Infinite width limit of NNs 27/02

7. Generative models 12/03

8. Exam 19/03
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Exam

1. Next week (19/03/2023).

2. Documents allowed.

3. From 8:30am to 10:30am (2h).

4. Similar to the homework.
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Generative models

Generative models
Beyond classification tasks
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Generative models

What is a generative model?

Generative vs. discriminative
§ Discriminative tasks such as classification aim at separating data.

§ Generative tasks aim at creating new data.
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Generative models

Examples of generative models

§ Image generation (face generation, deepfakes, ...).

source: https://this-person-does-not-exist.com/en
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Generative models

Examples of generative models

§ Image generation (face generation, deepfakes, ...).

§ Prompt-based image generation (Dalle2, Imagen, MidjourneyAI, ...).

source: MidjourneyAI. https://midjourney.com/

MASH Master 2, PSL Mathematics of Deep Learning, 2024 8/34

https://midjourney.com/


Generative models

Examples of generative models

§ Image generation (face generation, deepfakes, ...).
§ Prompt-based image generation (Dalle2, Imagen, MidjourneyAI, ...).
§ Text generation (Bert, GPT2, GPT3, ChatGPT, Bard, Sparrow, ...).

source: ChatGPT. https://chat.openai.com/
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Generative models

Neural architectures for generative tasks

Key aspects of a generative model

§ We want to output complex data (e.g. images, text, ...).

§ We want to sample random outputs from a learnt distribution.

§ Usually involves more difficult optimization problems than standard ERM.

§ How do we measure performance?

Three main approaches

1. Variational auto-encoders (VAEs)

2. Generative Adversarial Networks (GANs)

3. Score-based generative models / diffusion models
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Generating random variables

Generating random variables
Classical approaches to sampling probability distributions
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Generating random variables

Generative models

Approximating distributions with NNs

§ Intuition: How do we create models whose outputs are random variables?

§ Data: D̂n “ pX1, . . . , Xnq i.i.d. according to some target distribution D.

§ Objective: sample new elements X̃ „ D from the target distribution.

Extensions
§ Prompt-based models: one data distribution per input query. Equivalent to supervised
learning with a random output.

§ Learn a density function: some models also provide a density function.

No clear cut: classification tasks also generate probability distributions...
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Generating random variables

How to sample from a known distribution D?

Standard approaches

§ Parametric families of distributions: sampled by a simple function of a base
distribution. E.g. Gaussian X “ µ ` σY where Y „ N p0, 1q.

§ Inversion sampling: For 1D r.v., we have X “ F´1pY q where Y „ Upr0, 1sq is uniform
in r0, 1s and F is the cumulative distribution function of D.

§ Monte-Carlo Markov Chains: Start with a base distribution (e.g. Gaussian), and
iteratively refine it to get closer and closer to the target distribution D.

How to use it for generative models?

§ Parameter modelling: Learn the parameters pµ, σq “ gθpxq to generate N pµ, σq.

§ Transformation: generate with gθpY q „ D where Y „ N p0, Iq (VAEs, GANs).

§ Dynamics: Learn iterative refinements that transform N p0, Iq into D (diffusion).
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Variational Autoencoders

Variational Autoencoders (VAEs)
From compression to generation

MASH Master 2, PSL Mathematics of Deep Learning, 2024 14/34



Variational Autoencoders

But first... what is an autoencoder?

§ Objective: Learn a compressed data representation in an unsupervised manner.

§ Idea: Map data points to themselves gθpxq “ x with small inner representation.
§ Loss: Let eθ, dθ1 be two NNs, we want to minimize Ep}X ´ dθ1peθpXqq}2q.
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Variational Autoencoders

But first... what is an autoencoder?

§ Compression: If latent space is smaller than input space, information is compressed.

§ Generation: We can sample from the latent space.
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Variational Autoencoders

Autoencoders in PyTorch

The simplest possible autoencoder with a single affine layer as encoder and as decoder:

class AutoEncoder(nn.Module):

def __init__(self, input_dim, encoding_dim):

super(AutoEncoder, self).__init__()

self.encoder = nn.Linear(input_dim, encoding_dim)

self.decoder = nn.Linear(encoding_dim, input_dim)

def forward(self, x):

encoded = self.encoder(x)

decoded = self.decoder(encoded)

return decoded
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Variational Autoencoders

Autoencoders in PyTorch

After training, we obtain:
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Variational Autoencoders

Representation learning with autoencoders

§ Interpolation in latent space: We can interpolate between two images x and y with

xα “ dθ1

´

α eθpxq ` p1 ´ αq eθpyq

¯

for α P r0, 1s.

§ Results: Interpolation between digits 2 and 9.

§ Better than in the pixel space, but not perfect still...
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Variational Autoencoders

Is this a good generative model?

§ Limitations: There is no constraint on the regularity of the latent space embedding.

source: https: // towardsdatascience. com/ understanding-variational-autoencoders-vaes-f70510919f73
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Variational Autoencoders

Variational Autoencoders (VAEs)

§ Objective: Regularize by forcing the embedding to be robust to noise.
§ Idea: The encoder returns the parameters pµx, σxq “ eθpxq of a Gaussian distribution.
We sample Zx „ N pµx, σxq and minimize

min
θ,θ1

1

n

n
ÿ

i“1

}xi ´ dθ1pZxiq}2 ` dKL

´

N pµxi , σxiq, N p0, Iq

¯

where dKLpp, qq “ EX„pplogpppXq{qpXqqq measures the ”distance” between p and q.
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Variational Autoencoders

Regularization with KL divergence

§ Benefits: Each image is pushed to be mapped to a normal distribution.
§ Sampling: We can sample new images with dθ1pZq where Z „ N p0, Iq.

source: https: // towardsdatascience. com/ understanding-variational-autoencoders-vaes-f70510919f73MASH Master 2, PSL Mathematics of Deep Learning, 2024 23/34
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Performance measures

Performance measures
When is our model good enough?
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Performance measures

Comparing data distribution and generated distribution

§ Question: How should we measure distances between real and generated distributions?
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Performance measures

Likelihood of the data distribution

§ We already saw that we can train a probabilistic model by maximizing the likelihood of
the training data points (approach used by most of statistics!).

§ Equivalent to minimizing the negative log-likelihood:

min
θ

´

n
ÿ

i“1

log pθpxiq

where px1, . . . , xnq are the training data points and pθ is the density of the distribution.

§ Cons: Requires to have access to the density pθ. Can overfit training data.

§ This is equivalent to minimizing the Kullback-Leibler divergence dKLpp̂n, pθq, where:

dKLpp, qq “ E
ˆ

ln

ˆ

ppXq

qpXq

˙˙

where p̂n “ 1
n

ř

i δxi and X „ p.
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Performance measures

Other performance metrics

Wasserstein distance
§ Measures how similar are the two measures via evaluation functions:

dW pµ, νq “ sup
fPLip1

|EpfpXqq ´ EpfpY qq|

where X „ µ, Y „ ν and Lip1 is the space of 1-Lipschitz functions.

§ Measures are similar if there is no way to distinguish them with (Lipschitz) statistics.

§ Another (equivalent) definition via optimal transport.

Human evaluation
§ Compare the outputs and decide which generative model you prefer...

§ Limitations: subjective, and difficult to assess diversity.
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Generative Adversarial Networks

Generative Adversarial Networks (GANs)
Asking another NN if your NN is good enough
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Generative Adversarial Networks

Generative Adversarial Networks (Goodfellow et.al., 2014)

§ Idea: Use another NN (discriminator) to compare true and generated images.
§ Discriminator finds mistakes in the generation, and generator learns to fool the critic.
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Generative Adversarial Networks

Traning GANs: a min-max optimization problem

§ Generator: gθ generates a fake sample gθpZq with a Gaussian r.v. Z „ N p0, Iq.

§ Discriminator: dθ1 is a classifier and dθ1pxq is the probability for x to be a real sample.

§ Learning: gθ and dθ1 are learnt alternatively, i.e. one is fixed when the other is learnt.

§ Loss: For real images px1, . . . , xnq and generated images pgθpZ1q, . . . , gθpZnqq, we want

max
θ

min
θ1

Lpθ, θ1q “ ´
1

n

n
ÿ

i“1

log
´

dθ1pxiq
¯

` log
´

1 ´ dθ1pgθpziqq

¯

§ Interpretation: Discriminator minimizes its BCE loss, generator tries to maximize it.
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Generative Adversarial Networks

Learning algorithm and technical details

§ Descriptor: For a fixed generator gθ, the optimal discriminator is θ1
‹ “ argminθ1 Lpθ, θ1q.

§ Generator: For a fixed dθ1 , optimal gen. is θ‹ “ argmaxθ ´ 1
n

řn
i“1 log

´

1 ´ dθ1pgθpziqq

¯

.

§ Practice: This is often replaced by θ‹ “ argmaxθ
1
n

řn
i“1 log

´

dθ1pgθpziqq

¯

.

§ Intuition: When generator is weak compared to discriminator (i.e. dθ1pgθpzqq ! 1), the
modified loss boosts the learning of the generator thanks to its large grad. at 0.

§ Limitation: training extremely unstable, potential mode collapse.

§ Extensions: Wasserstein GANs (Arjovsky et.al., 2017) view the discriminator as the
probe function in Wasserstein distance. More principled and stable in practice.
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Generative Adversarial Networks

Deep Convolutional GAN (Radford et al., 2015)

§ ”Historical attempts to scale up GANs using CNNs to model images have been
unsuccessful. [...] However, after extensive model exploration we identified a family of
architectures that resulted in stable training across a range of datasets and allowed for
training higher resolution and deeper generative models.”

§ Heuristics: 1) Replace pooling layers with strided (transposed) convolutions. 2) Use
batchnorm in both gθ and dθ1 . 3) Remove linear layers. 4) use ReLU in gθ except for the
output using Tanh, and LeakyReLU in dθ1 .

source: Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. 2015.
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Generative Adversarial Networks

Recap

§ Generative models rely on learning to sample probability distributions.

§ VAEs use an Encoder-Decoder architecture to learn a low-dimensional latent
representation of the data distribution.

§ GANs use two adversarial networks trained alternatively (Generator and Discriminator).

§ To create images from low-dimensional vectors, we need to use transposed convolutions.

§ Training is very unstable, and requires lots of tricks in practice.
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