Mathematics of Deep Learning

Generative models

Lessons: Kevin Scaman

1.	Introduction and general overview	16/01
2.	Non-convex optimization	23/01
3.	Structure of ReLU networks and group invariances	06/02
4.	Approximation guarantees	13/02
5.	Stability and robustness	20/02
6.	Infinite width limit of NNs	27/02
7.	Generative models	12/03
8.	Exam	19/03

- 1. Next week (19/03/2023).
- 2. Documents allowed.
- 3. From 8:30am to 10:30am (2h).
- 4. Similar to the homework.

Generative models Beyond classification tasks

What is a generative model?

Generative vs. discriminative

- Discriminative tasks such as classification aim at separating data.
- Generative tasks aim at creating new data.

Discriminative tasks

Classification (access to (X,y) pairs)

Generative tasks

Sampling (access to X only)

MASH Master 2, PSL

Mathematics of Deep Learning, 2024

Image generation (face generation, deepfakes, ...).

source: https://this-person-does-not-exist.com/en

MASH Master 2, PSL

Image generation (face generation, deepfakes, ...).

source: https://this-person-does-not-exist.com/en

- Image generation (face generation, deepfakes, ...).
- Prompt-based image generation (Dalle2, Imagen, MidjourneyAI, ...).

source: MidjourneyAI. https://midjourney.com/

- Image generation (face generation, deepfakes, ...).
- Prompt-based image generation (Dalle2, Imagen, MidjourneyAI, ...).
- ▶ Text generation (Bert, GPT2, GPT3, ChatGPT, Bard, Sparrow, ...).

source: ChatGPT. https://chat.openai.com/

Neural architectures for generative tasks

Key aspects of a generative model

- ▶ We want to **output complex data** (e.g. images, text, ...).
- We want to **sample random outputs** from a learnt distribution.
- Usually involves more **difficult optimization problems** than standard ERM.
- How do we measure performance?

Neural architectures for generative tasks

Key aspects of a generative model

- ▶ We want to **output complex data** (e.g. images, text, ...).
- We want to **sample random outputs** from a learnt distribution.
- Usually involves more **difficult optimization problems** than standard ERM.
- How do we measure performance?

Three main approaches

- 1. Variational auto-encoders (VAEs)
- 2. Generative Adversarial Networks (GANs)
- 3. Score-based generative models / diffusion models

Generating random variables Classical approaches to sampling probability distributions

Approximating distributions with NNs

Intuition: How do we create models whose outputs are random variables?

Approximating distributions with NNs

- Intuition: How do we create models whose outputs are random variables?
- **Data:** $\hat{\mathcal{D}}_n = (X_1, \ldots, X_n)$ i.i.d. according to some target distribution \mathcal{D} .

Approximating distributions with NNs

- Intuition: How do we create models whose outputs are random variables?
- **Data:** $\hat{\mathcal{D}}_n = (X_1, \dots, X_n)$ i.i.d. according to some target distribution \mathcal{D} .
- **Objective:** sample new elements $\tilde{X} \sim \mathcal{D}$ from the target distribution.

Approximating distributions with NNs

- Intuition: How do we create models whose outputs are random variables?
- **Data:** $\hat{\mathcal{D}}_n = (X_1, \dots, X_n)$ i.i.d. according to some target distribution \mathcal{D} .
- **Objective:** sample new elements $\tilde{X} \sim \mathcal{D}$ from the target distribution.

Extensions

Prompt-based models: one data distribution per input query. Equivalent to supervised learning with a random output.

Approximating distributions with NNs

- Intuition: How do we create models whose outputs are random variables?
- **Data:** $\hat{\mathcal{D}}_n = (X_1, \dots, X_n)$ i.i.d. according to some target distribution \mathcal{D} .
- **Objective:** sample new elements $\tilde{X} \sim \mathcal{D}$ from the target distribution.

Extensions

- Prompt-based models: one data distribution per input query. Equivalent to supervised learning with a random output.
- **Learn a density function:** some models also provide a density function.

No clear cut: classification tasks also generate probability distributions...

Generating random variables

How to sample from a known distribution $\mathcal{D}?$

Standard approaches

• Parametric families of distributions: sampled by a simple function of a base distribution. E.g. Gaussian $X = \mu + \sigma Y$ where $Y \sim \mathcal{N}(0, 1)$.

Standard approaches

- Parametric families of distributions: sampled by a simple function of a base distribution. E.g. Gaussian X = μ + σY where Y ~ N(0,1).
- Inversion sampling: For 1D r.v., we have $X = F^{-1}(Y)$ where $Y \sim \mathcal{U}([0,1])$ is uniform in [0,1] and F is the cumulative distribution function of \mathcal{D} .

Standard approaches

- Parametric families of distributions: sampled by a simple function of a base distribution. E.g. Gaussian X = μ + σY where Y ~ N(0,1).
- Inversion sampling: For 1D r.v., we have $X = F^{-1}(Y)$ where $Y \sim \mathcal{U}([0,1])$ is uniform in [0,1] and F is the cumulative distribution function of \mathcal{D} .
- Monte-Carlo Markov Chains: Start with a base distribution (e.g. Gaussian), and iteratively refine it to get closer and closer to the target distribution \mathcal{D} .

Standard approaches

- Parametric families of distributions: sampled by a simple function of a base distribution. E.g. Gaussian $X = \mu + \sigma Y$ where $Y \sim \mathcal{N}(0, 1)$.
- Inversion sampling: For 1D r.v., we have $X = F^{-1}(Y)$ where $Y \sim \mathcal{U}([0,1])$ is uniform in [0,1] and F is the cumulative distribution function of \mathcal{D} .
- Monte-Carlo Markov Chains: Start with a base distribution (e.g. Gaussian), and iteratively refine it to get closer and closer to the target distribution \mathcal{D} .

How to use it for generative models?

- **Parameter modelling:** Learn the parameters $(\mu, \sigma) = g_{\theta}(x)$ to generate $\mathcal{N}(\mu, \sigma)$.
- Transformation: generate with $g_{\theta}(Y) \sim \mathcal{D}$ where $Y \sim \mathcal{N}(0, I)$ (VAEs, GANs).
- **Dynamics:** Learn iterative refinements that transform $\mathcal{N}(0, I)$ into \mathcal{D} (diffusion).

Variational Autoencoders (VAEs) From compression to generation

But first... what is an autoencoder?

- **• Objective:** Learn a **compressed data representation** in an unsupervised manner.
- ▶ Idea: Map data points to themselves $g_{\theta}(x) = x$ with small inner representation.
- **Loss:** Let $e_{\theta}, d_{\theta'}$ be two NNs, we want to minimize $\mathbb{E}(||X d_{\theta'}(e_{\theta}(X))||^2)$.

But first... what is an autoencoder?

- **Compression:** If latent space is smaller than input space, information is **compressed**.
- **Generation:** We can sample from the **latent space**.

Autoencoders in PyTorch

The simplest possible autoencoder with a single affine layer as encoder and as decoder:

```
class AutoEncoder(nn.Module):
def __init__(self, input_dim, encoding_dim):
    super(AutoEncoder, self).__init__()
    self.encoder = nn.Linear(input_dim, encoding_dim)
    self.decoder = nn.Linear(encoding_dim, input_dim)
    def forward(self, x):
    encoded = self.encoder(x)
    decoded = self.decoder(encoded)
    return decoded
```

Variational Autoencoders

Autoencoders in PyTorch

After training, we obtain:

Representation learning with autoencoders

Interpolation in latent space: We can interpolate between two images x and y with

$$x_{\alpha} = d_{\theta'} \left(\alpha e_{\theta}(x) + (1 - \alpha) e_{\theta}(y) \right)$$

for $\alpha \in [0,1]$.

Results: Interpolation between digits 2 and 9.

Better than in the pixel space, but not perfect still...

Representation learning with autoencoders

• Interpolation in latent space: We can interpolate between two images x and y with

$$x_{\alpha} = d_{\theta'} \left(\alpha e_{\theta}(x) + (1 - \alpha) e_{\theta}(y) \right)$$

for $\alpha \in [0, 1]$.

s this a good generative model?

Limitations: There is no constraint on the regularity of the latent space embedding.

source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

A A A C I I		
MASH	Master	PSI

Mathematics of Deep Learning, 2024

Variational Autoencoders (VAEs)

- **Objective:** Regularize by forcing the embedding to be **robust to noise**.
- Idea: The encoder returns the parameters $(\mu_x, \sigma_x) = e_{\theta}(x)$ of a Gaussian distribution. We sample $Z_x \sim \mathcal{N}(\mu_x, \sigma_x)$ and minimize

$$\min_{\theta,\theta'} \frac{1}{n} \sum_{i=1}^{n} \|x_i - d_{\theta'}(Z_{x_i})\|^2 + d_{\mathsf{KL}} \Big(\mathcal{N}(\mu_{x_i}, \sigma_{x_i}), \, \mathcal{N}(0, I) \Big)$$

where $d_{\mathrm{KL}}(p,q) = \mathbb{E}_{X \sim p}(\log(p(X)/q(X)))$ measures the "distance" between p and q.

MASH Master 2, PSL

Variational Autoencoders

Regularization with KL divergence

- Benefits: Each image is pushed to be mapped to a normal distribution.
- **Sampling:** We can sample new images with $d_{\theta'}(Z)$ where $Z \sim \mathcal{N}(0, I)$.

Performance measures When is our model good enough? Performance measures

Comparing data distribution and generated distribution

Question: How should we measure distances between real and generated distributions?

underlying distribution

Performance measures

Comparing data distribution and generated distribution

Question: How should we measure distances between real and generated distributions?

Likelihood of the data distribution

We already saw that we can train a probabilistic model by maximizing the likelihood of the training data points (approach used by most of statistics!). Performance measures

Likelihood of the data distribution

- We already saw that we can train a probabilistic model by maximizing the likelihood of the training data points (approach used by most of statistics!).
- Equivalent to minimizing the **negative log-likelihood**:

$$\min_{\theta} - \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

where (x_1, \ldots, x_n) are the training data points and p_{θ} is the density of the distribution.

Performance measures

Likelihood of the data distribution

- We already saw that we can train a probabilistic model by maximizing the likelihood of the training data points (approach used by most of statistics!).
- Equivalent to minimizing the **negative log-likelihood**:

$$\min_{\theta} - \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

where (x_1, \ldots, x_n) are the training data points and p_{θ} is the density of the distribution. **Cons:** Requires to have access to the density p_{θ} . Can overfit training data.

Likelihood of the data distribution

- We already saw that we can train a probabilistic model by maximizing the likelihood of the training data points (approach used by most of statistics!).
- Equivalent to minimizing the negative log-likelihood:

$$\min_{\theta} - \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

where (x_1, \ldots, x_n) are the training data points and p_{θ} is the density of the distribution.

- **Cons:** Requires to have access to the density p_{θ} . Can overfit training data.
- This is equivalent to minimizing the Kullback-Leibler divergence $d_{KL}(\hat{p}_n, p_\theta)$, where:

$$d_{KL}(p,q) = \mathbb{E}\left(\ln\left(\frac{p(X)}{q(X)}\right)\right)$$

where $\hat{p}_n = \frac{1}{n} \sum_i \delta_{x_i}$ and $X \sim p$.

Other performance metrics

Wasserstein distance

Measures how similar are the two measures via evaluation functions:

$$d_W(\mu,\nu) = \sup_{f \in \mathsf{Lip}_1} |\mathbb{E}(f(X)) - \mathbb{E}(f(Y))|$$

where $X \sim \mu$, $Y \sim \nu$ and Lip₁ is the space of 1-Lipschitz functions.

Other performance metrics

Wasserstein distance

Measures how similar are the two measures via evaluation functions:

$$d_W(\mu,\nu) = \sup_{f \in \mathsf{Lip}_1} |\mathbb{E}(f(X)) - \mathbb{E}(f(Y))|$$

where $X\sim\mu,\,Y\sim\nu$ and ${\rm Lip}_1$ is the space of 1-Lipschitz functions.

- Measures are similar if there is **no way to distinguish** them with (Lipschitz) statistics.
- Another (equivalent) definition via **optimal transport**.

Other performance metrics

Wasserstein distance

Measures how similar are the two measures via evaluation functions:

$$d_W(\mu,\nu) = \sup_{f \in \mathsf{Lip}_1} |\mathbb{E}(f(X)) - \mathbb{E}(f(Y))|$$

where $X\sim\mu,\,Y\sim\nu$ and ${\rm Lip}_1$ is the space of 1-Lipschitz functions.

- Measures are similar if there is **no way to distinguish** them with (Lipschitz) statistics.
- Another (equivalent) definition via optimal transport.

Human evaluation

- Compare the outputs and decide which generative model you prefer...
- Limitations: subjective, and difficult to assess diversity.

Generative Adversarial Networks (GANs) Asking another NN if your NN is good enough

Generative Adversarial Networks (Goodfellow et.al., 2014)

- Idea: Use another NN (discriminator) to compare true and generated images.
- > Discriminator finds **mistakes** in the generation, and generator learns to **fool** the critic.

• **Generator:** g_{θ} generates a fake sample $g_{\theta}(Z)$ with a Gaussian r.v. $Z \sim \mathcal{N}(0, I)$.

- **Generator:** g_{θ} generates a fake sample $g_{\theta}(Z)$ with a Gaussian r.v. $Z \sim \mathcal{N}(0, I)$.
- **Discriminator:** $d_{\theta'}$ is a classifier and $d_{\theta'}(x)$ is the probability for x to be a real sample.

- **Generator:** g_{θ} generates a fake sample $g_{\theta}(Z)$ with a Gaussian r.v. $Z \sim \mathcal{N}(0, I)$.
- **Discriminator:** $d_{\theta'}$ is a **classifier** and $d_{\theta'}(x)$ is the probability for x to be a real sample.
- **Learning:** g_{θ} and $d_{\theta'}$ are learnt **alternatively**, i.e. one is fixed when the other is learnt.
- **Loss:** For real images (x_1, \ldots, x_n) and generated images $(g_{\theta}(Z_1), \ldots, g_{\theta}(Z_n))$, we want

$$\max_{\theta} \min_{\theta'} \mathcal{L}(\theta, \theta') = -\frac{1}{n} \sum_{i=1}^{n} \log\left(d_{\theta'}(x_i)\right) + \log\left(1 - d_{\theta'}(g_{\theta}(z_i))\right)$$

- **Generator:** g_{θ} generates a fake sample $g_{\theta}(Z)$ with a Gaussian r.v. $Z \sim \mathcal{N}(0, I)$.
- **Discriminator:** $d_{\theta'}$ is a **classifier** and $d_{\theta'}(x)$ is the probability for x to be a real sample.
- **Learning:** g_{θ} and $d_{\theta'}$ are learnt **alternatively**, i.e. one is fixed when the other is learnt.
- **Loss:** For real images (x_1, \ldots, x_n) and generated images $(g_{\theta}(Z_1), \ldots, g_{\theta}(Z_n))$, we want

$$\max_{\theta} \min_{\theta'} \mathcal{L}(\theta, \theta') = -\frac{1}{n} \sum_{i=1}^{n} \log\left(d_{\theta'}(x_i)\right) + \log\left(1 - d_{\theta'}(g_{\theta}(z_i))\right)$$

• Interpretation: Discriminator minimizes its BCE loss, generator tries to maximize it.

Descriptor: For a fixed generator g_θ, the optimal discriminator is θ'_⋆ = argmin_{θ'} L(θ, θ').
Generator: For a fixed d_{θ'}, optimal gen. is θ_⋆ = argmax_θ - ¹/_n Σⁿ_{i=1} log (1 - d_{θ'}(g_θ(z_i))).

- **Descriptor:** For a fixed generator g_{θ} , the optimal discriminator is $\theta'_{\star} = \operatorname{argmin}_{\theta'} \mathcal{L}(\theta, \theta')$.
- **Generator:** For a fixed $d_{\theta'}$, optimal gen. is $\theta_{\star} = \operatorname{argmax}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 d_{\theta'}(g_{\theta}(z_i)) \right)$.
- **Practice:** This is often replaced by $\theta_{\star} = \operatorname{argmax}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \left(d_{\theta'}(g_{\theta}(z_i)) \right).$
- Intuition: When generator is weak compared to discriminator (i.e. $d_{\theta'}(g_{\theta}(z)) \ll 1$), the modified loss boosts the learning of the generator thanks to its large grad. at 0.

- **Descriptor:** For a fixed generator g_{θ} , the optimal discriminator is $\theta'_{\star} = \operatorname{argmin}_{\theta'} \mathcal{L}(\theta, \theta')$.
- **Generator:** For a fixed $d_{\theta'}$, optimal gen. is $\theta_{\star} = \operatorname{argmax}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 d_{\theta'}(g_{\theta}(z_i)) \right)$.
- **Practice:** This is often replaced by $\theta_{\star} = \operatorname{argmax}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \left(d_{\theta'}(g_{\theta}(z_i)) \right).$
- Intuition: When generator is weak compared to discriminator (i.e. $d_{\theta'}(g_{\theta}(z)) \ll 1$), the modified loss boosts the learning of the generator thanks to its large grad. at 0.
- Limitation: training extremely unstable, potential mode collapse.

- **Descriptor:** For a fixed generator g_{θ} , the optimal discriminator is $\theta'_{\star} = \operatorname{argmin}_{\theta'} \mathcal{L}(\theta, \theta')$.
- **Generator:** For a fixed $d_{\theta'}$, optimal gen. is $\theta_{\star} = \operatorname{argmax}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 d_{\theta'}(g_{\theta}(z_i)) \right)$.
- **Practice:** This is often replaced by $\theta_{\star} = \operatorname{argmax}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log \left(d_{\theta'}(g_{\theta}(z_i)) \right).$
- Intuition: When generator is weak compared to discriminator (i.e. $d_{\theta'}(g_{\theta}(z)) \ll 1$), the modified loss boosts the learning of the generator thanks to its large grad. at 0.
- Limitation: training extremely unstable, potential mode collapse.
- Extensions: Wasserstein GANs (Arjovsky et.al., 2017) view the discriminator as the probe function in Wasserstein distance. More principled and stable in practice.

Deep Convolutional GAN (Radford et al., 2015)

"Historical attempts to scale up GANs using CNNs to model images have been unsuccessful. [...] However, after extensive model exploration we identified a family of architectures that resulted in stable training across a range of datasets and allowed for training higher resolution and deeper generative models."

Deep Convolutional GAN (Radford et al., 2015)

- "Historical attempts to scale up GANs using CNNs to model images have been unsuccessful. [...] However, after extensive model exploration we identified a family of architectures that resulted in stable training across a range of datasets and allowed for training higher resolution and deeper generative models."
- Heuristics: 1) Replace pooling layers with strided (transposed) convolutions. 2) Use **batchnorm** in both g_{θ} and $d_{\theta'}$. 3) Remove linear layers. 4) use ReLU in g_{θ} except for the output using Tanh, and LeakyReLU in $d_{\theta'}$.

source: Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. 2015.

Recap

- Generative models rely on learning to sample probability distributions.
- VAEs use an Encoder-Decoder architecture to learn a low-dimensional latent representation of the data distribution.
- ▶ GANs use two adversarial networks trained alternatively (Generator and Discriminator).
- ▶ To create images from low-dimensional vectors, we need to use transposed convolutions.
- Training is very **unstable**, and requires lots of tricks in practice.